🎉 从330转为WashU帮助手册啦!

Math4111
模块
Math4111 L17

Lecture 17

Review

Given a sequence (an)(a_n) in R\mathbb{R}, let En={ak:kn}E_n=\{a_k:k\geq n\}. Calculate diamE1diam E_1, diamE2diam E_2, diamE3diam E_3... for the following sequences:

  1. an=0a_n=0: En={0}E_n=\{0\}, diamE1=0,diamE2=0,diamE3=0,diam E_1=0, diam E_2=0, diam E_3=0, \ldots
  2. an=na_n=n: En={n}E_n=\{n\}, diamE1=,diamE2=,diamE3=,diam E_1=\infty, diam E_2=\infty, diam E_3=\infty, \ldots
  3. an=(1)na_n=(-1)^n: En={1,1}E_n=\{-1,1\}, diamE1=2,diamE2=2,diamE3=2,diam E_1=2, diam E_2=2, diam E_3=2, \ldots
  4. an=1/na_n=1/n: En={1/n,1/(n+1),}E_n=\{1/n,1/(n+1),\dots\}, diamE1=12,diamE2=13,diamE3=14,diam E_1=\frac{1}{2}, diam E_2=\frac{1}{3}, diam E_3=\frac{1}{4}, \ldots
  5. an=(1)nna_n=\frac{(-1)^n}{n}: En={1/n,1/n,}E_n=\{-1/n,1/n,\dots\}, diamE1=11+12,diamE2=12+13,diamE3=13+14,diam E_1=\frac{1}{1}+\frac{1}{2}, diam E_2=\frac{1}{2}+\frac{1}{3}, diam E_3=\frac{1}{3}+\frac{1}{4}, \ldots

New materials

Cauchy sequence

Theorem 3.11

(b) If XX is a compact metric space, then every Cauchy sequence (pn)(p_n) in XX converges.

(c) In Rk\mathbb{R}^k, every Cauchy sequence (pn)(p_n) converges.

Proof:

(b) Let EN={pn:nN}E_N=\{p_n:n\geq N\}. Since (pn)(p_n) is Cauchy, limNdiamEN=0\lim_{N\to\infty} diam E_N=0. By Theorem 3.10 (a), limNdiamEN=0\lim_{N\to\infty} diam \overline{E_N}=0.

Since XX is compact, and EN\overline{E_N} is closed, by Theorem 2.35, EN\overline{E_N} is compact.

Since E1E2E3E_1\supset E_2\supset E_3\supset\cdots, E1E2E3\overline{E_1}\supset \overline{E_2}\supset \overline{E_3}\supset\cdots. By Theorem 3.10(b), pX\exists p\in X such that pN=1ENp\in\bigcap_{N=1}^{\infty}\overline{E_N}.

We claim that (pn)(p_n) converges to pp. Let ϵ>0\epsilon>0, there exists N0N_0 such that NN0\forall N\geq N_0, diamEN<ϵdiam \overline{E_N}<\epsilon.

For any nN0n\geq N_0, pnEN0p_n\in \overline{E_{N_0}}.

So d(pn,p)diamEN0<ϵd(p_n,p)\leq diam \overline{E_{N_0}}<\epsilon, by definition of diameter.

Therefore, (pn)(p_n) converges to pp.

(c) Let (pn)(p_n) be a Cauchy sequence in Rk\mathbb{R}^k.

By Theorem 3.9, (pn)(p_n) is bounded. So R>0\exists R>0 such that pnB(0,R)p_n\in B(0,R) for all nn. Moreover pnB(0,R)p_n\in \overline{B(0,R)}. and B(0,R)\overline{B(0,R)} is closed and bounded. Thus by Theorem 2.41, B(0,R)\overline{B(0,R)} is compact.

Note that Theorem 2.41 only works for Rk\mathbb{R}^k.

So by (b), (pn)(p_n) converges to some pB(0,R)p\in \overline{B(0,R)}.

EOP

Definition 3.12

Let XX be a metric space. We say XX is complete if every Cauchy sequence in XX converges.

Theorem 3.11(b) can also be rephrased as:

XX is a compact metric space     \implies XX is complete.

Theorem 3.11(c) can also be rephrased as:

Rk\mathbb{R}^k is complete.

Note: completeness is a property of the "universe" XX, not a property of any particular sequence in XX.

Q\mathbb{Q} is not complete. {3,3.1,3.14,3.141,3.1415,}\{3,3.1,3.14,3.141,3.1415,\dots\} is a Cauchy sequence in Q\mathbb{Q} but it does not converge in Q\mathbb{Q}.

Fact: If XX is complete and EE is a closed subset of XX, then EE is complete.

Definition 3.13

A sequence (sn)(s_n) of real numbers is said to be

  • monotone increasing if snsn+1s_n\leq s_{n+1} for all nn.
  • monotone decreasing if snsn+1s_n\geq s_{n+1} for all nn.
  • strictly monotone increasing if sn<sn+1s_n<s_{n+1} for all nn.
  • strictly monotone decreasing if sn>sn+1s_n>s_{n+1} for all nn.
  • monotone if it is either monotone increasing or monotone decreasing.

Example:

  1. sn=1/ns_n=1/n is strictly monotone decreasing.
  2. sn=(1)ns_n=(-1)^n is neither monotone increasing nor monotone decreasing.

Theorem 3.14

Suppose (sn)(s_n) is monotonic. Then (sn)(s_n) converges     \iff (sn)(s_n) is bounded.

Proof:

If (sn)(s_n) is monotonic and bounded, then by previous result, (sn)(s_n) converges.

If (sn)(s_n) is monotonic and converges, then by Theorem 3.2(c), (sn)(s_n) is bounded.

EOP

Upper and lower limits

Definition 3.15 (Divergence to \infty or -\infty)

Let (sn)(s_n) be a sequence of real numbers with the following properties:

For every real number MM there is an integer NN such that nNn\geq N implies sn>Ms_n>M. We then write sns_n\to\infty

For every real number MM there is an integer NN such that nNn\geq N implies sn<Ms_n<M. We then write sns_n\to-\infty.

for every real number, we can find a element in the sequence that is greater than or less than it

Definition 3.16

Let (sn)(s_n) be a sequence of real numbers.

Let En={x[,]: subsequence (snk) of (sn) such that snkx}E_n=\{x\in[-\infty,\infty]:\exists \textup{ subsequence } (s_{n_k})\textup{ of } (s_n)\textup{ such that } s_{n_k}\to x\}.

Let S=supEnS^*=\sup E_n, S=infEnS_*=\inf E_n.

We define lim supnsn=S\limsup_{n\to\infty} s_n=S^* and lim infnsn=S\liminf_{n\to\infty} s_n=S_*

Informally, SS^* is the largest possible value that a subsequence of (sn)(s_n) can converge to.

Example:

sn=(1)ns_n=(-1)^n, En={1,1}E_n=\{-1,1\}, S=supEn=1S^*=\sup E_n=1, S=infEn=1S_*=\inf E_n=-1. and limnsn\lim_{n\to\infty} s_n does not exist.

One advantage of lim sup\limsup and lim inf\liminf is that they always exist (they may be \infty or -\infty), even if the sequence does not converge.