🎉 从330转为WashU帮助手册啦!

Math4111
模块
Math4111 L20

Lecture 20

Review

Using the binomial theorem, prove that

10!+11!+12!++1n!(1+1n)n\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{n!}\geq \left(1+\frac{1}{n}\right)^n

Binomial theorem: (x+y)n=k=0n(nk)xnkyk(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k (nk)=n!k!(nk)!\binom{n}{k} = \frac{n!}{k!(n-k)!}

Proof:

(1+1n)n=k=0n(nk)(1)nk(1n)k=k=0n(nk)1nk=k=0n1k!j=1knj+1n\begin{aligned} \left(1+\frac{1}{n}\right)^n &= \sum_{k=0}^{n} \binom{n}{k} \left(1\right)^{n-k} \left(\frac{1}{n}\right)^k \\ &= \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} \\ &= \sum_{k=0}^{n} \frac{1}{k!} \prod_{j=1}^{k} \frac{n-j+1}{n} \\ \end{aligned}

Since j1j\geq 1, nj+1n1\frac{n-j+1}{n} \leq1.

=k=0n1k!j=1knj+1nk=0n1k!\begin{aligned} &= \sum_{k=0}^{n} \frac{1}{k!} \prod_{j=1}^{k} \frac{n-j+1}{n} \\ &\geq \sum_{k=0}^{n} \frac{1}{k!} \\ \end{aligned}

New material

Series

Definition 3.30

e=n=01n!e=\sum_{n=0}^{\infty} \frac{1}{n!}

Lemma 3.30

n=01n!\sum_{n=0}^{\infty} \frac{1}{n!} converges.

Proof:

If n2n\geq 2,

1n!=1n1(n1)!121212=12n1\begin{aligned} \frac{1}{n!} &= \frac{1}{n} \cdot \frac{1}{(n-1)!} \\ &\leq \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{2} \\ &= \frac{1}{2^{n-1}} \end{aligned} 1n!12n1\frac{1}{n!} \leq \frac{1}{2^{n-1}}

So n=01n!\sum_{n=0}^{\infty} \frac{1}{n!} converges.

Theorem 3.31

limn(1+1n)n=e\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e

Proof:

Let sn=k=0n1k!s_n = \sum_{k=0}^{n} \frac{1}{k!}, let tn=(1+1n)nt_n = \left(1+\frac{1}{n}\right)^n.

Goal: limnsn=limntn\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n. we already proved limnsn\lim_{n\to\infty} s_n exists. But we don't know yet if limntn\lim_{n\to\infty} t_n exists.

By warmup exercise, n0,tnsn\forall n\geq 0, t_n \leq s_n.

So if lim supntnlim supnsn\limsup_{n\to\infty} t_n \leq \limsup_{n\to\infty} s_n, then limntn\lim_{n\to\infty} t_n exists and limntn=limnsn\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n.

Now we will show lim supntne\limsup_{n\to\infty} t_n \geq e.

Idea: (special case of the argument)

If n2n\geq 2, then

tn=k=0n(nk)(1n)k(n0)+(n1)1n+(n2)(1n)2++(nn)(1n)n=1+nn+n(n1)2n2++1nn\begin{aligned} t_n &= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^k \\ &\geq \binom{n}{0} + \binom{n}{1}\frac{1}{n} + \binom{n}{2}\left(\frac{1}{n}\right)^2 + \cdots + \binom{n}{n}\left(\frac{1}{n}\right)^n \\ &= 1 + \frac{n}{n} + \frac{n(n-1)}{2n^2} + \cdots + \frac{1}{n^n} \\ \end{aligned}

Let nn\to\infty, then

lim infntn1+1+12+13+\liminf_{n\to\infty} t_n \geq 1 + 1 + \frac{1}{2} + \frac{1}{3} + \cdots

Fix m2m\geq 2, for any nmn\geq m,

tn10!+11!+12!nnn1n+1m!nnn1nnm+1nt_n \geq \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!}\frac{n}{n}\frac{n-1}{n}\cdots+\frac{1}{m!}\frac{n}{n}\frac{n-1}{n}\cdots\frac{n-m+1}{n}

Let nn\to\infty, then

lim infntn10!+11!+12!++1m!=sm\liminf_{n\to\infty} t_n \geq \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{m!}=s_m

So lim infntnlimnsn=e\liminf_{n\to\infty} t_n \geq \lim_{n\to\infty} s_n = e.

Therefore, elim infntnlim supntnee\leq \liminf_{n\to\infty} t_n\leq \limsup_{n\to\infty} t_n\leq e.

So limntn\lim_{n\to\infty} t_n exists and limntn=e\lim_{n\to\infty} t_n = e.

EOP

Theorem 3.32

ee is irrational.

Q: How good is the approximation is sns_n to ee?

A: Very good actually.

esn=k=n+11k!<1(n+1)!(1+1n+1+1(n+1)2+)=1(n+1)!k=0(1n+1)k=1(n+1)!111n+1=1n!1n<1n!n\begin{aligned} e-s_n &= \sum_{k=n+1}^{\infty} \frac{1}{k!} \\ &<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^2}+\cdots\right) \\ &=\frac{1}{(n+1)!}\sum_{k=0}^{\infty}\left(\frac{1}{n+1}\right)^k \\ &=\frac{1}{(n+1)!}\frac{1}{1-\frac{1}{n+1}} \\ &=\frac{1}{n!}\cdot\frac{1}{n} \\ &<\frac{1}{n!n} \end{aligned}

Proof:

Suppose e=pqe=\frac{p}{q} for some p,qNp,q\in\mathbb{N}.

Observe that:

sq=1+1+12++1q!s_q=1+1+\frac{1}{2}+\cdots+\frac{1}{q!}

So q!sqq! s_q is an integer.

Since e=pqe=\frac{p}{q}, q!eq!e is an integer, q!(esq)q!(e-s_q) is an integer.

However,

0<q!(esq)<q!q!q<1q0<q!(e-s_q)<\frac{q!}{q!q}<\frac{1}{q}

Contradiction.

EOP

The root and ratio tests

This is a fancy way of using comparison test with geometric series.

Theorem 3.33 (Root test)

annα    anαn \sqrt[n]{|a_n|} \leq \alpha \implies |a_n|\leq \alpha^n

Given a series n=0an\sum_{n=0}^{\infty} a_n, put α=lim supnann\alpha = \limsup_{n\to\infty} \sqrt[n]{|a_n|}.

Then

(a) If α<1\alpha < 1, then n=0an\sum_{n=0}^{\infty} a_n converges.
(b) If α>1\alpha > 1, then n=0an\sum_{n=0}^{\infty} a_n diverges.
(c) If α=1\alpha = 1, the test gives no information

Proof:

(a) Suppose α<1\alpha < 1. Then β\exists \beta such that α<β<1\alpha < \beta < 1.

By Theorem 3.17(b), nN,ann<β\forall n\geq N, \sqrt[n]{|a_n|} < \beta.

So nN,an<βn\forall n\geq N, |a_n| < \beta^n.

By comparison test, n=0an\sum_{n=0}^{\infty} a_n converges.

(b) Suppose α>1\alpha > 1. By Theorem 3.17(a), {nN:ann>1}\{n\in \mathbb{N}: \sqrt[n]{|a_n|} > 1\} is infinite.

Thus an↛0a_n\not\to 0, n=0an\sum_{n=0}^{\infty} a_n diverges.

(c) n=01n\sum_{n=0}^{\infty} \frac{1}{n} and n=01n2\sum_{n=0}^{\infty} \frac{1}{n^2} both have α=1\alpha = 1. but the first diverges and the second converges.

EOP

Theorem 3.34 (Ratio test)

an+1anα    anαn \left|\frac{a_{n+1}}{a_n}\right| \leq \alpha \implies |a_n|\leq \alpha^n

Given a series n=0an\sum_{n=0}^{\infty} a_n, anC\{0}a_n\in\mathbb{C}\backslash\{0\}.

Then

(a) If lim supnan+1an<1\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1, then n=0an\sum_{n=0}^{\infty} a_n converges.
(b) If an+1an1\left|\frac{a_{n+1}}{a_n}\right| \geq 1 for all nn0n\geq n_0 for some n0Nn_0\in\mathbb{N}, then n=0an\sum_{n=0}^{\infty} a_n diverges.

Remark:

  1. If lim supnan+1an=1\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1, the test gives no information.
  2. If lim supnan+1an>1\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1, the test gives no information.

Proof:

(b) nn0,an+1an1\forall n\geq n_0, \left|\frac{a_{n+1}}{a_n}\right| \geq 1.

So an0↛0a_{n_0}\not\to 0, n=0an\sum_{n=0}^{\infty} a_n diverges.

(a) β(lim supnan+1an,1)\beta \in(\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|, 1).

By Theorem 3.17(b), N\exists N such that nN,an+1an<β<1\forall n\geq N, \left|\frac{a_{n+1}}{a_n}\right| < \beta < 1.

So,

aN<βaNaN+1<βaN+1aN+2<βaN+2\begin{aligned} |a_N| &< \beta|a_N|\\ |a_{N+1}| &< \beta|a_{N+1}|\\ |a_{N+2}| &< \beta|a_{N+2}|\\ \end{aligned}

i.e. nN,an<βnNaN=βn(βNaN)\forall n\geq N, |a_n| < \beta^{n-N}|a_N|=\beta^n(\beta^{-N}|a_N|).

Since n=Nβn\sum_{n=N}^{\infty} \beta^n converges, by comparison test, n=0an\sum_{n=0}^{\infty} a_n converges.

EOP

We will skip Theorem 3.37. One implication is that if ratio test can be applied, then root test can be applied.

Power series

Definition 3.38

Let (cn)(c_n) be a sequence of complex numbers. A power series is a series of the form

n=0cnzn\sum_{n=0}^{\infty} c_n z^n

Theorem 3.39

Given a power series n=0cnzn\sum_{n=0}^{\infty} c_n z^n, let R=1lim supncnnR=\frac{1}{\limsup_{n\to\infty} \sqrt[n]{|c_n|}}.

Then

(a) The series converges absolutely for all zCz\in\mathbb{C} with z<R|z| < R.
(b) The series diverges for all zCz\in\mathbb{C} with z>R|z| > R.
(c) If 0r<R0\leq r < R, then the series converges uniformly on the closed disk {zC:zr}\{z\in\mathbb{C}: |z|\leq r\}.

Proof:

lim supncnznn=lim supncnnz=zR\begin{aligned} \limsup_{n\to\infty} \sqrt[n]{|c_n z^n|} &= \limsup_{n\to\infty} \sqrt[n]{|c_n|} \cdot |z| \\ &= \frac{|z|}{R} \end{aligned}

By root test, the series converges absolutely for all zCz\in\mathbb{C} with z<R|z| < R.

EOP