๐ŸŽ‰ ไปŽ330่ฝฌไธบWashUๅธฎๅŠฉๆ‰‹ๅ†Œๅ•ฆ!

Math4111
ๆจกๅ—
Math4111 L14

Lecture 14

Review

Consider the following statement: If sequence (pn)(p_n) converges, then its bounded.

  1. Will the proof involve an arbitrary ฯต>0\epsilon>0 (one that you, the prover, do nto get to choose) or a specific ฯต>0\epsilon>0 (on that you can choose)
    We can choose, for example ฯต=1\epsilon=1.
  2. Give a proof of the statement.

Continue on sequence

Convergence

Theorem 3.2(c)

(pn)(p_n) converges โ€…โ€ŠโŸนโ€…โ€Š(pn)\implies(p_n) is bounded.

Proof:

Suppose (pn)(p_n) converges, then โˆƒpโˆˆX\exists p\in X such that pnโ†’pp_n\to p. Let ฯต=1\epsilon=1, then โˆƒNโˆˆN\exists N\in \mathbb{N} such that โˆ€nโ‰ฅN,d(pn,p)<1\forall n\geq N,d(p_n,p)<1. Let r=1+max{1,d(p1,p),d(p2,p),โ€ฆ,d(pNโˆ’1,p)}r=1+max\{1,d(p_1,p),d(p_2,p),\dots,d(p_{N-1},p)\}.

Then โˆ€nโˆˆN,d(pn,p)โ‰คr\forall n\in \mathbb{N}, d(p_n,p)\leq r.

Theorem 3.2

Let (pn)(p_n) be a sequence in (X,d)(X,d)

(a) pnโ†’pโ€…โ€ŠโŸบโ€…โ€Šโˆ€r>0,{nโˆˆN,pnโˆ‰Br(p)}p_n\to p\iff \forall r>0,\{n\in \mathbb{N},p_n\notin B_r(p)\} is finite
(b) pnโ†’p;pnโ†’pโ€ฒโ€…โ€ŠโŸนโ€…โ€Šp=pโ€ฒp_n\to p; p_n\to p'\implies p=p' (converging point is unique)
(c) (pn)(p_n) converges โ€…โ€ŠโŸนโ€…โ€Š(pn)\implies(p_n) is bounded.
(d) If EโŠ‚XE\subset X and pโˆˆEโ€พp\in \overline{E}, then โˆƒ(pn)โˆˆE\exist (p_n)\in E such that pnโ†’pp_n\to p.

Proof:

(a) We need to show:

โˆ€ฯต>0โˆˆN\forall \epsilon>0 \in N, โˆ€nโ‰ฅN,d(pn,p)<ฯต\forall n\geq N,d(p_n,p)<\epsilon if and only if โˆ€r>0,{nโˆˆN:pโˆ‰Br(p)}\forall r>0, \{n\in \mathbb{N}:p\notin B_r(p)\} is finite.

โ€…โ€ŠโŸนโ€…โ€Š\implies

Suppose โˆ€ฯต>0โˆˆN\forall \epsilon>0 \in N, โˆ€nโ‰ฅN,d(pn,p)<ฯต\forall n\geq N,d(p_n,p)<\epsilon.

We start with arbitrary r>0r>0. and choose ฯต=n\epsilon=n

โˆƒN\exists N such that โˆ€nโ‰ฅN,d(pn,p)<r\forall n\geq \mathbb{N},d(p_n,p)<r.

Then {nโˆˆN:pโˆ‰Br(p)}<{1,2,โ€ฆ,Nโˆ’1}\{n\in \mathbb{N}:p\notin B_r(p)\}<\{1,2,\dots,N-1\} is finite.

โ€…โ€ŠโŸธโ€…โ€Š\impliedby

Suppose โˆ€r>0,{nโˆˆN:pโˆ‰Br(p)}\forall r>0, \{n\in \mathbb{N}:p\notin B_r(p)\} is finite. Choosing r=ฯตr=\epsilon. We choose r=ฯตr=\epsilon. {nโˆˆN:pโˆ‰Bฯต(p)}<{1,2,โ€ฆ,Nโˆ’1}\{n\in \mathbb{N}:p\notin B_\epsilon(p)\}<\{1,2,\dots,N-1\}.

Let N=1+max{nโˆˆN,pnโˆ‰Bฯต(p)}N=1+max\{n\in \mathbb{N},p_n\notin B_\epsilon(p)\}

Then โˆ€nโ‰ฅN,pnโ‰คBฯต(p)\forall n\geq \mathbb{N},p_n\leq B_\epsilon(p)

(b) We'll prove โˆ€ฯต>0,d(p,pโ€ฒ)<2ฯต\forall \epsilon>0,d(p,p')<2\epsilon to prove it, let ฯต>0\epsilon >0. Then

pnโ†’pโ€…โ€ŠโŸนโ€…โ€ŠโˆƒNp_n\to p\implies \exists N such that โˆ€nโ‰ฅN,d(pn,p)<ฯต\forall n\geq \mathbb{N},d(p_n,p)<\epsilon
pnโ†’pโ€ฒโ€…โ€ŠโŸนโ€…โ€ŠโˆƒNโ€ฒp_n\to p'\implies \exists N' such that โˆ€nโ‰ฅN,d(pn,pโ€ฒ)<ฯต\forall n\geq \mathbb{N},d(p_n,p')<\epsilon

Let n0=max{N,Nโ€ฒ}n_0=max\{N,N'\}, then

d(p,pโ€ฒ)โ‰คd(pn,pn0)+d(pn0,pโ€ฒ)<2ฯตd(p,p')\leq d(p_n,p_{n_0})+d(p_{n_0},p')<2\epsilon

And โˆ€ฯต>0,d(p,pโ€ฒ)<2ฯตโ€…โ€ŠโŸนโ€…โ€Šd(p,pโ€ฒ)=0\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0. So p=pโ€ฒp=p'

Remark: We can also prove this with contradiction. Idea pโ‰ pโ€ฒโ€…โ€ŠโŸนโ€…โ€Šd(p,pโ€ฒ)>0p\neq p'\implies d(p,p')>0, let ฯต=12d(p,qโ€ฒ)โ€ฆ\epsilon=\frac{1}{2}d(p,q')\dots

(d) Suppose pโˆˆEโ€พp\in \overline{E}. Then โˆ€nโˆˆN,B1n(p)โˆฉEโ‰ ฯ•\forall n\in \mathbb{N}, B_{\frac{1}{n}}(p)\cap E\neq \phi. So โˆ€nโˆˆN\forall n\in \mathbb{N}, โˆƒpnโˆˆB1n(p)โˆฉE\exists p_n\in B_{\frac{1}{n}}(p)\cap E. We'll show pnโ†’pp_n\to p.

Let ฯต>0\epsilon>0. Choose NโˆˆNN\in \mathbb{N} such that N>1ฯตN>\frac{1}{\epsilon}. Then if nโ‰ฅNn\geq N, d(pn,p)<1nโ‰ค1Nโ‰คฯตd(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon

EOP

Theorem 3.3

Let (sn),(tn)(s_n), (t_n) be sequence in C\mathbb{C}. Suppose snโ†’s,tnโ†’ts_n\to s,t_n\to t

(a) sn+tnโ†’s+ts_n+t_n\to s+t
(b) csnโ†’cs,c+snโ†’c+scs_n\to cs,c+s_n\to c+s
(c) sntnโ†’sts_nt_n\to st
(d) If โˆ€nโˆˆN,snโ‰ 0,sโ‰ 0\forall n\in \mathbb{N},s_n\neq 0,s\neq 0, then 1snโ†’1s\frac{1}{s_n}\to \frac{1}{s}

Proof:

(a) We want to prove โˆ€ฯต>0,โˆƒN\forall \epsilon>0, \exists N such that โˆ€nโ‰ฅN,โˆฃ(sn+tn)โˆ’(s+t)โˆฃ<ฯต\forall n\geq N, |(s_n+t_n)-(s+t)|<\epsilon

Let ฯต>0\epsilon >0

snโ†’sโ€…โ€ŠโŸนโ€…โ€ŠโˆƒNss_n\to s\implies \exist N_s such that โˆ€nโ‰ฅNs,โˆฃsnโˆ’sโˆฃ<ฯต2\forall n\geq N_s,|s_n-s|<\frac{\epsilon}{2}
tnโ†’tโ€…โ€ŠโŸนโ€…โ€ŠโˆƒNtt_n\to t\implies \exist N_t such that โˆ€nโ‰ฅNt,โˆฃtnโˆ’tโˆฃ<ฯต2\forall n\geq N_t,|t_n-t|<\frac{\epsilon}{2}

Let N=maxโก{Nt,Ns}N=\max\{N_t,N_s\}, then if nโ‰ฅNn\geq N,

โˆฃ(sn+tn)โˆ’(s+t)โˆฃ=โˆฃ(sn+s)โˆ’(tnโˆ’t)โˆฃโ‰คโˆฃsnโˆ’sโˆฃ+โˆฃtnโˆ’tโˆฃ<ฯต2+ฯต2<ฯต\begin{aligned} |(s_n+t_n)-(s+t)|&=|(s_n+s)-(t_n-t)|\\ &\leq |s_n-s|+|t_n-t|\\ &< \frac{\epsilon}{2}+\frac{\epsilon}{2}\\ &<\epsilon \end{aligned}

(b) exercise

(c) First we'll prove a special case.

snโ†’0ย andย tnโ†’0โ€…โ€ŠโŸนโ€…โ€Šsntnโ†’0s_n\to 0 \textup{ and }t_n\to 0\implies s_nt_n\to 0

Suppose snโ†’0s_n\to 0 and tnโ†’0t_n\to 0.

Let ฯต>0\epsilon >0

snโ†’0โ€…โ€ŠโŸนโ€…โ€ŠโˆƒNss_n\to 0\implies \exist N_s such that โˆ€nโ‰ฅNs,โˆฃsnโˆ’sโˆฃ<ฯต\forall n\geq N_s,|s_n-s|<\sqrt{\epsilon}
tnโ†’0โ€…โ€ŠโŸนโ€…โ€ŠโˆƒNtt_n\to 0\implies \exist N_t such that โˆ€nโ‰ฅNt,โˆฃtnโˆ’tโˆฃ<ฯต\forall n\geq N_t,|t_n-t|<\sqrt{\epsilon}

Let N=maxโก{Nt,Ns}N=\max\{N_t,N_s\}, then if nโ‰ฅNn\geq N,

โˆฃsntnโˆฃ<ฯต2=ฯต|s_n t_n|< \sqrt{\epsilon}^2=\epsilon

Now we prove the general case.

snโ†’sย andย tnโ†’tโ€…โ€ŠโŸนโ€…โ€Šsntnโ†’sts_n\to s \textup{ and }t_n\to t\implies s_nt_n\to st

Since

sntn=(snโˆ’s)(tnโˆ’t)+s(tnโˆ’t)+t(snโˆ’s)s_n t_n=(s_n-s)(t_n-t)+s(t_n-t)+t(s_n-s)

So

limโกnโ†’โˆž(sntnโˆ’st)=limโกnโ†’โˆž(snโˆ’s)(tnโˆ’t)+limโกnโ†’โˆžs(tnโˆ’t)+limโกnโ†’โˆžt(snโˆ’s)\lim_{n\to \infty}(s_nt_n-st)=\lim_{n\to \infty}(s_n-s)(t_n-t)+\lim_{n\to \infty}s(t_n-t)+\lim_{n\to \infty}t(s_n-s)

limโกnโ†’โˆž(snโˆ’s)(tnโˆ’t)=0\lim_{n\to \infty}(s_n-s)(t_n-t)=0 by special case

limโกnโ†’โˆžs(tnโˆ’t)=0\lim_{n\to \infty}s(t_n-t)=0 by (b)

limโกnโ†’โˆžt(snโˆ’s)=0\lim_{n\to \infty}t(s_n-s)=0 by (b)

Thought process for (d)

โˆฃ1snโˆ’1sโˆฃ=โˆฃsnโˆ’sโˆฃโˆฃsnโˆฃโˆฃsโˆฃ<ฯต\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s_n-s|}{|s_n||s|}< \epsilon

If nn is large enough, then...