🎉 从330转为WashU帮助手册啦!

Math4111
模块
Math4111 L5

Lecture 5

Review

In each case, determine (with justification) whether the claim or its negation is the true statement.

(a) For all real numbers satisfying a<ba<b, there exists an nNn\in \mathbb{N} such that a+1/n<ba+1/n<b.

negation: a<b\exists a<b, nN\forall n\in \mathbb{N} such that a+1/nba+1/n\geq b.

By Archimedean property, the statement is true.

(b) There exists a real number x>0x>0 such that x<1/nx<1/n for all nNn\in \mathbb{N}.

The statement is ambiguous because we can arrange the statement in two ways.

xR>0\exists x\in \mathbb{R}_{>0} such that nN,x1n\forall n\in \mathbb{N},x\leq \frac{1}{n}

negation: xR>0\forall x\in \mathbb{R}_{>0}, nN\exists n\in \mathbb{N}, such that x1nx\leq \frac{1}{n}.

The statement is true, let x=1n+1x=\frac{1}{n+1}.

New Materials

Continue on the theorem

Theorem 1.21

xR>0,nN,\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist unique yR>0y\in \mathbb{R}_{>0} such that yn=xy^n=x.

(Because of this Theorem we can define x1/x=yx^{1/x}=y and x=y\sqrt{x}=y)

Proof:

We cna assume n2n\geq 2 (For n=1,y=xn=1,y=x)

Step 1 (uniqueness): If 0<y1<y20<y_1<y_2, then y1n<y2ny_1^n<y_2^n (by properties of ordered field)

Step 2 (existence): Let E={tR>0:tn<x}E=\{t\in \mathbb{R}_{>0}: t^n<x\} We want to let y=sup Ey=sup\ E, but to do this we need to check 2 things.

  1. To show EϕE\neq \phi:

    If x1x\geq 1, then 1/2E1/2\in E.

    If x<1x<1, then xEx\in E.

  2. To show EE is bounded above. We need to find an upper bound.

    If x1x\geq 1, then xEx\in E

    If x<1x<1, then 1E1 \in E.

So we can let y=sup Ey=sup\ E

Step 2b (ynxy^n\geq x) Suppose for contradiction yn<xy^n<x.

Thoughts: If we can find h>0h>0 such that (y+h)n<x(y+h)^n<x, then y+hEy+h\in E. This would contradict the facts yy is an upper bound of EE.

(y+h)n=yn+nyn1h+more terms(y+h)^n=y^n+ny^{n-1}h+{more\ terms}

We want nyn1h+more terms<xynny^{n-1}h+{more\ terms}<x-y^n

Observe: If 0<a<b0<a<b, then

bnanba=bn1+bn2a+...+an1bn1+bn2b+...+bn1=nbn1\frac{b^n-a^n}{b-a}=b^{n-1}+b^{n-2}a+...+a^{n-1}\leq b^{n-1}+b^{n-2}b+...+b^{n-1}=nb^{n-1}

The fact tells us (y+h)nynn(y+h)n1h(y+h)^n-y^n\leq n(y+h)^{n-1}h.

And we want n(y+h)n1h+yn<xn(y+h)^{n-1} h+y^n<x.

So want h<xyhn(y+h)n1h<\frac{x-y^h}{n(y+h)^{n-1}}.

To achieve this, choosey any h>0h>0 satisfying h<1h<1 and h<xyhn(y+h)n1h<\frac{x-y^h}{n(y+h)^{n-1}}

[For actual proof, see the text.]

Step 2c showing (ynxy^n\leq x)

Suppose for contradiction yn>xy^n>x

Thoughts: Find k>0k>0 such that (yk)n>x(y-k)^n>x.

Then yky-k is an upper bound for EE, which contradicts the fact that yy is the least upper bound of EE.

yn(yk)nnyn1ky^n-(y-k)^n\leq ny^{n-1}k.

We want ynnyn1kxy^n-ny^{n-1}k\geq x.

So want kynxnyn1k\leq \frac{y^n-x}{ny^{n-1}}

[For actual proof, see the text.]

Complex numbers

  1. ={a+bi:a,bR}=\{a+bi:a,b\in \mathbb{R}\}.

Conjugate: z=a+bi,zˉ=abiz=a+bi,\bar{z}=a-bi.

Theorem 1.31 (see text)

Pure computational proof: boring...

zzˉ=a2(bi)2=a2+b2z\bar{z}=a^2-(bi)^2=a^2+b^2

You can also use vector sum for representing operation in complex numbers.

Theorem 1.33 (see text)

More computation and still, boring...

some fun theorems:

  • Re zz|Re\ z|\leq |z| (equal when no imaginary parts)
  • z+wz+w|z+w|\leq |z|+|w| (equal when both z,wz,w have no imaginary parts) (Triangle inequality)

Proof for z+wz+w|z+w|\leq |z|+|w|:

z+w2=(z+w)(z+w)=(z+w)(zˉ+wˉ)=z2+w2+zwˉ+zˉw|z+w|^2=(z+w)(\overline{z+w})=(z+w)(\bar{z}+\bar{w})=|z|^2+|w|^2+z\bar{w}+\bar{z}w

Since

zwˉ+zˉw2Re(zwˉ)z\bar{w}+\bar{z}w\leq 2Re(z\bar{w}) (z+w)(zˉ+wˉ)=z2+w2+zwˉ+zˉwz2+w2+2zwz+w(z+w)(\bar{z}+\bar{w})=|z|^2+|w|^2+z\bar{w}+\bar{z}w\leq |z|^2+|w|^2+2|z||w|\leq |z|+|w|

Theorem 1.35 Cauchy-Schwarz inequality

If a,bCn\vec{a},\vec{b}\in \mathbb{C}^n, then

ab2(aa)(bb)|\vec{a}\vec{b}|^2\leq (\vec{a}\vec{a})(\vec{b}\vec{b})

Remark: The proof is very tricky.

To help us motivate the proof in text, let's consider the special case of real numbers.

(ajbj)2=(aj2)(bj2)(\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2)

Proof for real numbers:

Let A=aj2,B=bj2,C=ajbjA=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j, want to show C2ABC^2\leq AB

Note: if B=0B=0, then b1=b2=...=0b_1=b_2=...=0, so C=0C=0 and we are done, so we may assume B0B\neq 0 so B>0B>0.

Clever step: For any tRt\in \mathbb{R},

0(ajtbj)2=(aj22tajbj+t2bi2)=A2tC+t2B0\leq \sum (a_j-t b_j)^2=\sum (a_j^2-2ta_jb_j+t^2b_i^2)=A-2tC+t^2B

let t=C/Bt=C/B to get 0A2(C/B)C+(C/B)2B=AC2B0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}

to generalize this to C\mathbb{C}, A=aj2,B=bj2,C=ajbjˉA=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|.

Euclidean spaces

Nothing much to say. lol.

Normal dot product as inner product.

read text... Theorem 1.37