🎉 从330转为WashU帮助手册啦!

Math4111
模块
Math4111 L18

Lecture 18

Review

Let (sn)(s_n) be a sequence in R\mathbb{R}, and suppose lim supnsn=1\limsup_{n\to\infty} s_n=1. Consider the following four sets:

  1. {nN:sn>2}\{n\in\mathbb{N}:s_n>2\}
  2. {nN:sn<2}\{n\in\mathbb{N}:s_n<2\}
  3. {nN:sn>0}\{n\in\mathbb{N}:s_n>0\}
  4. {nN:sn<0}\{n\in\mathbb{N}:s_n<0\}

For each set, determine if the set (1)(1) must be infinite, or (2)(2) must be finite, or (3)(3) could be either finite or infinite, depending on the sequence (sn)(s_n).

If lim infnsn=1\liminf_{n\to\infty} s_n=1, then limnsup{sn,sn+1,sn+2,}=1\lim_{n\to\infty} \sup\{s_n,s_{n+1},s_{n+2},\dots\}=1.

So 1 must be finite, since if it is infinite, then lim supnsn2\limsup_{n\to\infty} s_n\geq 2, which contradicts the given lim supnsn=1\limsup_{n\to\infty} s_n=1.

2 and 3 are infinite.

since lim infnsn=1\liminf_{n\to\infty} s_n=1, there exists infinitely many nn such that 2>sn>02>s_n>0.

4 could be either finite or infinite.

  • sn=(1)ns_n=(-1)^n is example for 4 being infinite.
  • sn=1s_n=1 is example for 4 being finite.

Continue on Limit Superior and Limit Inferior

Limit Superior

Definition 3.16

Let (sn)(s_n) be a sequence of real numbers.

SS^* is the largest possible value that a subsequence of (sn)(s_n) can converge to.

(Normally, we need to be careful about the definition of "largest possible value", but in this case it does exist by Theorem 3.7.)

Abbott's definition:

S=lim supn{sk:kn}S^*=\limsup_{n\to\infty}\{s_k:k\geq n\}.

Theorem 3.17

Let (sn)(s_n) be a sequence of real numbers.

SS^* is the unique number satisfying the following:

  1. x<S,{nN:snx}\forall x<S^*, \{n\in\mathbb{N}:s_n\geq x\} is infinite. (same as saying NN,nN\forall N\in\mathbb{N},\exists n\geq N such that snxs_n\geq x)
  2. x>S\forall x>S^*, {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is finite. (same as saying NN\exists N\in\mathbb{N} such that nN    sn<xn\geq N\implies s_n<x)

In other words, SS^* is the boundary between when {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is infinite and when it is finite.

Proof:

(a) Case 1: S=S^*=\infty.

Then supE=\sup E=\infty, so (sn)(s_n) is not bounded above.

So xR\forall x\in\mathbb{R}, {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is infinite.

Case 2: SRS^*\in\mathbb{R}.

Then S=supEE=ES^*=\sup E\in \overline{E}=E, by Theorem 3.7.

So (snk)\exists (s_{n_k}) such that snkSs_{n_k}\to S^*.

So x<S\forall x<S^*, {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is infinite.

Case 3: S=S^*=-\infty: The statement is vacuously true. (x<\nexists x<-\infty)

(b) We'll prove the contrapositive: If {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is infinite, then SxS^*\leq x.

Case 1: (sn)(s_n) is not bounded above.

Then \exists subsequence (snk)(s_{n_k}) such that snks_{n_k}\to\infty. Thus S=xS^*=\infty\leq x.

Case 2: (sn)(s_n) is bounded above.

Let MM be an upper bound for (sn)(s_n). Then {nN:sn[M,x]}\{n\in\mathbb{N}:s_n\in[M,x]\} is infinite, by Theorem 3.6 (b) (\exists subsequence (snk)(s_{n_k}) in [x,M)[x,M) and t[x,M]\exists t\in[x,M] such that snkts_{n_k}\to t. This implies tEt\in E, so xtSx\leq t\leq S^*).

EOP

Theorem 3.19 ("one-sided squeeze theorem")

Let (sn)(s_n) and (tn)(t_n) be two sequences such that sntns_n\leq t_n for all nNn\in\mathbb{N}, then

lim supnsnlim supntn\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n lim infnsnlim infntn\liminf_{n\to\infty} s_n\leq \liminf_{n\to\infty} t_n

Proof:

By transitivity of \leq, for all xRx\in\mathbb{R},

{nN:snx}{nN:tnx}|\{n\in\mathbb{N}:s_n\geq x\}|\leq |\{n\in\mathbb{N}:t_n\geq x\}|

By Theorem 3.17, {nN:tnx}\{n\in\mathbb{N}:t_n\geq x\} is finite     \implies {nN:snx}\{n\in\mathbb{N}:s_n\geq x\} is finite.

Thus lim supnsnlim supntn\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n.

EOP

Normal squeeze theorem: If sntnuns_n\leq t_n\leq u_n for all nNn\in\mathbb{N}, and limnsn=limnun=L\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L, then limntn=L\lim_{n\to\infty} t_n=L.

Proof: Exercise, hint: unL    lim supnun=lim infnun=Lu_n\to L\implies \limsup_{n\to\infty} u_n=\liminf_{n\to\infty} u_n=L.

Theorem 3.20

Binomial theorem: (1+x)n=k=0n(nk)xk(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k.

Special sequences:

(a) If p>0p>0, then limn1np=0\lim_{n\to\infty}\frac{1}{n^p}=0.

We want to find 1np<ϵ    n1ϵ1/p\frac{1}{n^p}<\epsilon\iff n\geq\frac{1}{\epsilon^{1/p}}.

(b) If p>0p>0, then limnpn=1\lim_{n\to\infty}\sqrt[n]{p}=1.

We want to find pn1<ϵ    p<(1+ϵ)n\sqrt[n]{p}-1<\epsilon\iff p<(1+\epsilon)^n.

Bernoulli's inequality: for ϵ>0,nN\epsilon>0,n\in\mathbb{N}, (1+ϵ)n1+nϵ(1+\epsilon)^n\geq 1+n\epsilon.

So it's enough to have p<1+nϵp<1+n\epsilon

So we can choose N>p1ϵN>\frac{p-1}{\epsilon}.

Another way of writing this: Let xn=pn1x_n=\sqrt[n]{p}-1.

Then p=(1+xn)n1+nxnp=(1+x_n)^n\geq 1+nx_n.

So 0xnp1n0\leq x_n\leq\frac{p-1}{n}.

By the squeeze theorem, xn0x_n\to 0.s

(c) limnnn=1\lim_{n\to\infty}\sqrt[n]{n}=1.

We want to find nn1<ϵ    n<(1+ϵ)n\sqrt[n]{n}-1<\epsilon\iff n<(1+\epsilon)^n. (this will not work for bernoulli's inequality)

So it's enough to have n<n(n1)2ϵ2    n>1+2ϵ2n<\frac{n(n-1)}{2}\epsilon^2\iff n>1+\frac{2}{\epsilon^2}. So choose N>1+2ϵ2N>1+\frac{2}{\epsilon^2}.

(d) If p>0p>0 and α\alpha is real, then limnnα(1+p)n=0\lim_{n\to\infty}\frac{n^\alpha}{(1+p)^n}=0.

With binomial theorem, (1+p)n(nk)pk(kn)(1+p)^n\geq \binom{n}{k}p^k(k\leq n).

(nk)=n(n1)(n2)(nk+1)k!\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}.

If n2kn\geq 2k, then nk+1nn2+1n2n-k+1\geq n-\frac{n}{2}+1\geq\frac{n}{2}.

So (nk)(n/2)kk!\binom{n}{k}\geq\frac{(n/2)^k}{k!}.

Continue on next class.