๐ŸŽ‰ ไปŽ330่ฝฌไธบWashUๅธฎๅŠฉๆ‰‹ๅ†Œๅ•ฆ!

Math4111
ๆจกๅ—
Math4111 L7

Lecture 7

Review

Let S={(x,y,z)โˆˆR3:x=1,y=4}={(1,4,z):zโˆˆR}S=\{(x,y,z)\in \mathbb{R}^3:x=1,y=4\}=\{(1,4,z):z\in\mathbb{R}\}

  1. How can we describe the set SS geometrically in three-dimensional space?

    Just a line

  2. Show that SS and R\mathbb{R} are in one-to-one correspondence.

    We can find a bijective function f:Sโ†’Rf:S\to \mathbb{R}

  3. Show that for any (a,b)โˆˆZ2(a,b)\in\mathbb{Z}^2, the set {(a,b,z):zโˆˆZ}\{(a,b,z):z\in\mathbb{Z}\} is in one-to-one correspondence with Z\mathbb{Z}

    Use Theorem 2.13 AA is countable, nโˆˆNโ€…โ€ŠโŸนโ€…โ€ŠAn={(a1,...,an):a1โˆˆA,anโˆˆA}n\in \mathbb{N} \implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}, is countable.

New materials

Metric spaces

Definition 2.15

Let XX be a set. A function d:Xร—Xโ†’Rd:X\times X\to \mathbb{R} is called a distance function or a metric if it satisfies:

  1. Positivity: โˆ€p,qโˆˆX,pโ‰ qโ€…โ€ŠโŸนโ€…โ€Šd(p,q)>0\forall p,q\in X,p\neq q\implies d(p,q)>0, and โˆ€pโˆˆX,d(p,p)=0\forall p\in X,d(p,p)=0.
  2. Symmetry: โˆ€p,qโˆˆX,d(p,q)=d(q,p)\forall p,q\in X, d(p,q)=d(q,p).
  3. Triangle inequality: โˆ€p,q,rโˆˆX\forall p,q,r\in X, d(p,q)โ‰คd(p,r)+d(r,q)d(p,q)\leq d(p,r)+d(r,q)

We say (X,d)(X,d) is a metric space. If dd is understood, XX is a metric space.

Examples:

The most important example:

XโŠ‚Rk(kโ‰ฅ1)X\subset \mathbb{R}^k(k\geq 1)

d(x,y)=โˆฃxโˆ’yโˆฃd(x,y)=|x-y|

And other examples: function spaces...

An example from graph theory (not needed for this class):

d(p,q)d(p,q) can be defined by the shortest path fro pp to qq.

Definition 2.17

By the segment (a,b)(a,b) we mean the set of all real numbers xx such that a<x<ba<x<b.

segment excludes the bound (a,b)(a,b)

By the interval [a,b][a,b] we mean the set of all real numbers xx such that aโ‰คxโ‰คba\leq x\leq b

  • interval include the bound* [a,b][a,b]

Convex: EโŠ‚RkE\subset \mathbb{R}^k is convex if โˆ€x,yโˆˆE,{ฮปx+(1โˆ’ฮป)y:ฮปโˆˆ(0,1)}โŠ‚E\forall x,y\in E,\{\lambda x+(1-\lambda)y:\lambda\in (0,1)\}\subset E

Open sets

Definition 2.18

Let (X,d)(X,d) be a metric space.

  1. pโˆˆX,r>0p\in X,r>0. The r-neighborhood of pp is Br(p)=Nr(o)={qโˆˆX:d(p,q)<r}B_r(p)=N_r(o)=\{q\in X: d(p,q)<r\} (a ball in metric space)
  2. EโŠ‚XE\subset X, pโˆˆXp\in X. We say pp is an interior point of EE if โˆƒr>0\exists r>0 such that Br(p)โŠ‚EB_r(p)\subset E. Notation Eโˆ˜=E^{\circ}=set of interior points of EE
  3. EโŠ‚XE\subset X, we say EE is open if EโŠ‚Eโˆ˜E\subset E^{\circ}, i.e. โˆ€pโˆˆE,โˆƒr>0\forall p\in E, \exists r>0 such that Br(p)โŠ‚EB_r(p)\subset E.

Note: is follows from definitions that Eโˆ˜โŠ‚EE^{\circ}\subset E is always true.

Example:

X=R2X=\mathbb{R}^2(dd be the euclidean distance) E=[0,1)ร—[0,1)E=[0,1)\times [0,1).

Eโˆ˜=(0,1)ร—(0,1)E^{\circ}=(0,1)\times (0,1)

So E=(0,1)ร—(0,1)E=(0,1)\times (0,1) is a open set.

Theorem 2.19

Let (X,d)(X,d) be a metric space, โˆ€pโˆˆX,โˆ€r>0\forall p\in X,\forall r>0, Br(p)B_r(p) is an open set.

every ball is an open set

Proof: Let qโˆˆBr(p)q\in B_r(p).

Let h=rโˆ’d(p,q)h=r-d(p,q).

Since qโˆˆBr(p),h>0q\in B_r(p),h>0. We claim that Bh(q)B_h(q). Then d(q,s)<hd(q,s)<h, so d(p,s)โ‰คd(p,q)+d(q,s)<d(p,q)+h=rd(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r. (using triangle inequality) So SโˆˆBr(p)S\in B_r(p).

Closed sets

  1. EโŠ‚X,pโˆˆXE\subset X,p\in X. We say pp is a limit point of EE if โˆ€r>0,(Br(p)โˆฉE)\pโ‰ ฯ•\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi.

    Let Eโ€ฒE' be the set of limit points of EE.

  2. EE is closed if Eโ€ฒโŠ‚EE'\subset E

Example: X=R2X=\mathbb{R}^2, E=[0,1)ร—[0,1)E=[0,1)\times [0,1).

(1,1)(1,1) is a limit point.

X=R,E={1n,nโˆˆN}X=\mathbb{R},E=\{\frac{1}{n},n\in \mathbb{N}\}

00 is the only limit point. Eโ€ฒ={0}E'=\{0\}