๐ŸŽ‰ ไปŽ330่ฝฌไธบWashUๅธฎๅŠฉๆ‰‹ๅ†Œๅ•ฆ!

Math4111
ๆจกๅ—
Math4111 L4

Lecture 4

Review

  1. Let FF be a field. Let a,b,c,...,zโˆˆFa,b,c,...,z\in F . Using he field axioms, simplify

    (xโˆ’a)(xโˆ’b)(xโˆ’c)...(xโˆ’z)(x-a)(x-b)(x-c)...(x-z)

    xโˆˆFx\in F, it must be at least one 00 in the product...

  2. Suppose A,BโŠ‚RA,B\subset\mathbb{R}. Suppose AA and BB are nonempty and bounded above,AโŠ‚BA\subset B. WHat can you say about supย Asup\ A and supย Bsup\ B? Please justify.

    โˆ€xโˆˆA,xโˆˆB.supย Aโ‰คsupย B\forall x\in A, x\in B. sup\ A\leq sup\ B

    Any UB of BB is also an UB of AA.

    supย Bsup\ B is an UB of BB by def supย Bsup\ B is an UB of AA

Continue

Archimedean property

(Archimedean property) If x,yโˆˆRx,y\in \mathbb{R} and x>0x>0, then โˆƒnโˆˆN\exists n\in \mathbb{N} such that nx>ynx>y.

Proof

Suppose the property is false, then โˆƒx,yโˆˆR\exist x,y\in \mathbb{R} with x>0x>0 such that โˆ€vโˆˆN\forall v\in \mathbb{N}, nx\leq y$

Let A={nx:nโˆˆN}A=\{nx:n\in\mathbb{N}\}. Then Aโ‰ ฯ•A\neq\phi (Since xโˆˆAx\in A) and AA is bounded above by yy. Since R\mathbb{R} has LUBP, supย Asup\ A exists. Let ฮฑ=supย A\alpha=sup\ A.

x>0โ€…โ€ŠโŸนโ€…โ€Šฮฑโˆ’x<ฮฑx>0\implies \alpha-x<\alpha, ฮฑโˆ’x\alpha-x is not an upper bound of AA. (Since ฮฑ\alpha is the LUB of AA) โ€…โ€ŠโŸนโ€…โ€ŠโˆƒmโˆˆN\implies \exist m\in \mathbb{N} such that mx>ฮฑโˆ’xmx>\alpha-x by definition of AA.

This implies (m+1)x>ฮฑ(m+1)x>\alpha

Since (m+1)xโˆˆฮฑ(m+1)x\in \alpha, this contradicts the fact that ฮฑ\alpha is an upper bound of AA.

EOP

Q\mathbb{Q} is dense in R\mathbb{R}

Q\mathbb{Q} is dense in R\mathbb{R}) If x,yโˆˆRx,y\in \mathbb{R} and x<yx<y, then \exists p\in \mathbb{Q}$$ such that x<p<y$.

Some thoughts:

x<mn<yโ€…โ€ŠโŸบโ€…โ€Šnx<m<nyx<\frac{m}{n}<y\iff nx<m<ny

Proof:

Let x,yโˆˆRx,y\in\mathbb{R}, with x<yx<y. We'll find nโˆˆN,mโˆˆZn\in \mathbb{N},\mathbb{m}\in \mathbb{Z} such that nx<m<nynx<m<ny.

By Archimedean property, โˆƒnโˆˆN\exist n\in \mathbb{N} such that n(yโˆ’x)>1n(y-x)>1, and โˆƒm1โˆˆN\exist m_1\in \mathbb{N} such that m1โ‹…1>nxm_1\cdot 1>nx, โˆƒm2โˆˆN\exist m_2\in \mathbb{N} such that m2โ‹…1>โˆ’nxm_2\cdot 1>-nx.

So โˆ’m2<nx<m1-m_2<nx<m_1. Thus โˆƒmโˆˆZ\exist m\in \mathbb{Z} such that mโˆ’1โ‰คnx<mm-1\leq nx<m (Here we use a property of Z\mathbb{Z}) We have ny>1+nxโ‰ฅ1+(mโˆ’1)=mny>1+nx\geq 1+(m-1)=m

EOP

2โˆˆR\sqrt{2}\in \mathbb{R}, (xnโˆˆR)(\sqrt[n]{x}\in\mathbb{R})

Notation R>0\mathbb{R}_{>0}= the set of positive numbers.

Theorem 1.21

โˆ€xโˆˆR>0,โˆ€nโˆˆN,โˆƒ\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist unique yโˆˆR>0y\in \mathbb{R}_{>0} such that yn=xy^n=x.

(Because of this Theorem we can define x1/x=yx^{1/x}=y and x=y\sqrt{x}=y)

Proof:

We cna assume nโ‰ฅ2n\geq 2 (For n=1,y=xn=1,y=x)

Step 1 (uniqueness): If 0<y1<y20<y_1<y_2, then y1n<y2ny_1^n<y_2^n (by properties of ordered field)

Step 2 (existence): Let E={tโˆˆR>0:tn<x}E=\{t\in \mathbb{R}_{>0}: t^n<x\} We want to let y=supย Ey=sup\ E, but to do this we need to check 2 things.

  1. To show Eโ‰ ฯ•E\neq \phi:

    If xโ‰ฅ1x\geq 1, then 1/2โˆˆE1/2\in E.

    If x<1x<1, then xโˆˆEx\in E.

  2. To show EE is bounded above. We need to find an upper bound.

    If xโ‰ฅ1x\geq 1, then xโˆˆEx\in E

    If x<1x<1, then 1โˆˆE1 \in E.

So we can let y=supย Ey=sup\ E

Step 2b (ynโ‰ฅxy^n\geq x) Suppose for contradiction yn<xy^n<x.

Thoughts: If we can find h>0h>0 such that (y+h)n<x(y+h)^n<x, then y+hโˆˆEy+h\in E. This would contradict the facts yy is an upper bound of EE.

(y+h)n=yn+nynโˆ’1h+moreย terms(y+h)^n=y^n+ny^{n-1}h+{more\ terms}

We want nynโˆ’1h+moreย terms<xโˆ’ynny^{n-1}h+{more\ terms}<x-y^n

Observe: If 0<a<b0<a<b, then

bnโˆ’anbโˆ’a=bnโˆ’1+bnโˆ’2a+...+anโˆ’1โ‰คbnโˆ’1+bnโˆ’2b+...+bnโˆ’1=nbnโˆ’1\frac{b^n-a^n}{b-a}=b^{n-1}+b^{n-2}a+...+a^{n-1}\leq b^{n-1}+b^{n-2}b+...+b^{n-1}=nb^{n-1}