🎉 从330转为WashU帮助手册啦!

Math4111
模块
Math4111 L15

Lecture 15

Review

Let (an)n=1(a_n)_{n=1}^\infty and (bn)n=1(b_n)_{n=1}^\infty be sequence in R\mathbb{R}. Let xn=(an,bn)R2x_n=(a_n,b_n)\in \mathbb{R}^2, so (xn)n=1(x_n)_{n=1}^\infty be a sequence in R2\mathbb{R}^2. Consider the following statement:

ana and bnb    xn(a,b)a_n\to a\textup{ and }\quad b_n\to b\iff x_n\to (a,b)

1.Prove the     \impliedby direction. That means you should prove the two things:
(a) If xn(a,b)x_n\to (a,b), then anaa_n\to a. (The proof of this begins: Suppose xn(a,b)x_n\to (a,b). Let ϵ>0\epsilon>0 be arbitrary. Then N\exists N such that nN\forall n\geq N)
We begins (with the goal ϵ>0,N\forall \epsilon>0,\exists N such that nN,ana<ϵ\forall n\geq N,|a_n-a|<\epsilon).
Proof:
Let ϵ>0\epsilon>0 be arbitrary, then N\exists N such that nN,ana<ϵ\forall n\geq N,|a_n-a|<\epsilon. Then if nNn\geq N, anaana2ana2+bnb2=xn(a,b)<ϵ|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon.
EOP
(b) If xn(a,b)x_n\to (a,b), then bnbb_n\to b. This follows from the same argument from (a) 2. Prove the     \implies direction. Goal: ϵ>0,N\forall \epsilon>0,\exists N such that nN,ana<ϵ\forall n\geq N,|a_n-a|<\epsilon. Proof: Let ϵ>0\epsilon>0 be arbitrary.
Since anaa_n\to a, N1\exists N_1 such that nN1,ana<ϵ\forall n\geq N_1,|a_n-a|<\epsilon.
Since bnbb_n\to b, N2\exists N_2 such that nN2,bnb<ϵ\forall n\geq N_2,|b_n-b|<\epsilon.
Let N=max{N1,N2}N=\max\{N_1,N_2\}. Then if nNn\geq N, ana<ϵ|a_n-a|<\epsilon and bnb<2ϵ|b_n-b|<\sqrt{2}\epsilon.
Same as last time, we can choose any smaller epsilon.
Since anaa_n\to a, N1\exists N_1 such that nN1,ana<ϵ2\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}.
Since bnbb_n\to b, N2\exists N_2 such that nN2,bnb<ϵ2\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}.
Let N=max{N1,N2}N=\max\{N_1,N_2\}. Then if nNn\geq N, ana<ϵ|a_n-a|<\epsilon and bnb<ϵ22+ϵ22=ϵ|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon.
EOP

New Materials

Continue from Theorem 3.3

Suppose (sn),(tn)(s_n),(t_n) are sequences in C\mathbb{C} and sns,tnts_n\to s,t_n\to t. Then

(a) sn+tns+ts_n+t_n\to s+t
(b) csncscs_n\to cs, c+snc+sc+s_n\to c+s
(c) sntnsts_nt_n\to st
(d) If nN,sn0,s0\forall n\in \mathbb{N},s_n\neq 0, s\neq 0, then 1sn1s\frac{1}{s_n}\to \frac{1}{s}

Thought process for (d):

1sn1s=ssnsns=ssnssn\left|\frac{1}{s_n}-\frac{1}{s}\right|=\left|\frac{s-s_n}{s_ns}\right|=\frac{|s-s_n|}{|s||s_n|}

We choose large enough NN such that nN,sns<s2\forall n\geq N,|s_n-s|<\frac{|s|}{2}. Then by triangle inequality, sn>s2|s_n|>\frac{|s|}{2}.

s=ssn+snsssn+sns<s2+sns2<sn\begin{aligned} |s|&=|s-s_n+s_n|\\ |s|&\leq |s-s_n|+|s_n|\\ |s|&<\frac{|s|}{2}+|s_n|\\ \frac{|s|}{2}&< |s_n| \end{aligned}

So snsssn<2snss2\frac{|s_n-s|}{|s||s_n|}<\frac{2|s_n-s|}{|s|^2}.

We choose nn large enough such that

2snss2<ϵ\frac{2|s_n-s|}{|s|^2}<\epsilon

Then sns<ϵs22|s_n-s|<\frac{\epsilon|s|^2}{2}.

Proof:

Let ϵ>0\epsilon>0, since snss_n\to s

N\exists N such that nN,sns<s2\forall n\geq N,|s_n-s|<\frac{|s|}{2}.

N\exists N such that nN,sns<ϵs22\forall n\geq N,|s_n-s|<\frac{\epsilon|s|^2}{2}.

Let N=max{N1,N2}N=\max\{N_1,N_2\}. Then if nNn\geq N,

1sn1s=ssnssn<ϵs22s2=ϵ\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon

EOP

Subsequences

Definition 3.5

Given a sequence (pn)n=1(p_n)_{n=1}^\infty, a sequence of (ni)i=1(n_i)_{i=1}^\infty is strictly increasing sequence in N\mathbb{N}. i.e. n1<n2<n3<n_1<n_2<n_3<\cdots.

The sequence (pni)i=1(p_{n_i})_{i=1}^\infty is called a subsequence of (pn)n=1(p_n)_{n=1}^\infty.

Example:

pn=1n,ni=i2p_n=\frac{1}{n},n_i=i^2, then the subsequence is (pni)i=1=(1i2)i=1(p_{n_i})_{i=1}^\infty=\left(\frac{1}{i^2}\right)_{i=1}^\infty. i.e. (14,19,116,)(\frac{1}{4},\frac{1}{9},\frac{1}{16},\cdots)

(pn)n=1(p_n)_{n=1}^\infty converges to pp if and only if every subsequence of (pn)n=1(p_n)_{n=1}^\infty converges to pp.

Proof:

    \impliedby:

(pni)i=1(p_{n_i})_{i=1}^\infty is a subsequence of (pn)n=1(p_n)_{n=1}^\infty.

    \implies:

Thought process: show what if the sequence does not converge to pp, then there exists a subsequence that does not converge to pp.

EOP

Theorem 3.6

(a) If (pn)(p_n) is a sequence in a compact metric space XX, then (pn)(p_n) has a convergent subsequence converges to a point of XX.

(b) If (pn)(p_n) is a bounded sequence in Rk\mathbb{R}^k, then (pn)(p_n) has a convergent subsequence in Rk\mathbb{R}^k.

Proof:

(a) Let E={pn:nN}E=\{p_n:n\in \mathbb{N}\}. Note that EE is a set, not a sequence.

Case 1: EE is finite.

Then some term appears infinitely many times. i.e pE\exists p\in E and subsequence (pni)(p_{n_i}) such that for all ii, pni=pp_{n_i}=p.

Then (pni)(p_{n_i}) converges to pp.

Case 2: EE is infinite.

By Theorem 2.37, if EE is an infinite subset of a compact set KK, then EE has a limit point in KK.

pE    r>0,Br(p)E\{p}ϕp\in E'\implies \forall r>0, B_r(p)\cap E\backslash \{p\}\neq \phi

  • Choose nin_i such that pniBi(p)p_{n_i}\in B_i(p)
  • If n1,,ni1n_1,\dots, n_{i-1} have bee chosen, choose nin_i such that ni>ni1n_i>n_{i-1} and pniB1i(p)p_{n_i}\in B_{\frac{1}{i}}(p). Then pnipp_{n_i}\to p

(b) Since (pn)(p_n) is bounded , M\exists M such that nN\forall n\in N, pnBM(0)={yRk:yM}p_n\in \overline{B_M(0)}=\{y\in\mathbb{R}^k:|y|\leq M\}

BM(0)\overline{B_M(0)} is a closed and bounded set in Rk\mathbb{R}^k.

Then by Theorem 2.41, BM(0)\overline{B_M(0)} is compact.

By part (a), (pn)(p_n) has a subsequence (pni)(p_{n_i}) has a subsequence that converges to BM(0)B_M(0).

Theorem 3.37

Let XX be a metric space, (pn)(p_n) is a sequence in XX.

Let E={pX: subsequence (pni) such that pnip}E^*=\{p\in X:\exists\textup{ subsequence }(p_{n_i})\textup{ such that }p_{n_i}\to p\}.

Then EE^* is closed in XX.

Example:

X=RX=\mathbb{R}

  1. pn=1np_n=\frac{1}{n}, E={0}E^*=\{0\}. (Specifically, if pnpp_n\to p, then E{p}E^*\to \{p\})
  2. pn={1,n is odd0,n is evenp_n=\begin{cases}1,n\textup{ is odd}\\ 0,n\textup{ is even}\end{cases}, E={0,1}E^*=\{0,1\}
  3. pn=np_n=n, E=ϕE^*=\phi
  4. pn=sinnxp_n=\sin nx, E={0,1}E^*=\{0,1\}
  5. pn=sinnp_n=\sin n, E=[0,1]E^*=[0,1]