๐ŸŽ‰ ไปŽ330่ฝฌไธบWashUๅธฎๅŠฉๆ‰‹ๅ†Œๅ•ฆ!

Math4111
ๆจกๅ—
Math4111 L8

Lecture 8

Review

Let (X,d)(X,d) be a metric space. Recall that Br(x)={zโˆˆX:d(x,z)<r}B_r(x)=\{z\in X:d(x,z)<r\}.

Let x,yโˆˆXx,y\in X and let r=12d(x,y)r=\frac{1}{2}d(x,y). What do you think is true about Br(x)โˆฉBr(y)B_r(x)\cap B_r(y)? Can you prove it?

It should be empty. Proof any point cannot be in two balls at the same time. (By triangle inequality or contradiction)

Metric space defs

  1. pโˆˆX,r>0p\in X,r>0, Br(p)={qโˆˆX:d(p,q)<0}B_r(p)=\{q\in X:d(p,q)<0\}, also called neighborhood.
  2. pp is a limit point of E(pโˆˆEโ€ฒ)E(p\in E') if โˆ€r>0\forall r>0, (Bs(p)โˆฉE)\{p}โ‰ ฯ•(B_s(p)\cap E)\backslash \{p\}\neq \phi
  3. If pโˆˆEp\in E and pp is not a limit point of EE, then pp is called an isolated point of EE.
  4. EE is closed if Eโ€ฒโŠ‚EE'\subset E
  5. pp is a interior point of E(pโˆˆEโˆ˜)E(p\in E^{\circ}) if โˆƒr>0\exists r>0 such that Br(p)โŠ‚EB_r(p)\subset E.

New materials

Metric space

Theorem 2.20

pโˆˆEโ€ฒโ€…โ€ŠโŸนโ€…โ€Šโˆ€r>0,Br(p)โˆฉEp\in E'\implies \forall r>0,B_r(p)\cap E is infinite.

Proof:

We will prove the contrapositive.

want to prove โˆƒr>0\exists r>0 such that Br(p)โˆฉEB_r(p)\cap E is finite โ€…โ€ŠโŸนโ€…โ€Špโˆ‰Eโ€ฒ\implies p\notin E' (โˆƒs>0\exists s>0 such that (Bs(p)โˆฉE)\{p}=ฯ•(B_s(p)\cap E)\backslash \{p\}=\phi)

Suppose โˆƒr>0\exists r>0 such that Br(p)โˆฉEB_r(p)\cap E is finite

let Bs(p)โˆฉE)\{p}=q1,...,qnB_s(p)\cap E)\backslash \{p\}={q_1,...,q_n}

  • If n=0n=0, then Bs(p)โˆฉE)\{p}=ฯ•B_s(p)\cap E)\backslash \{p\}=\phi, so pโˆˆEโ€ฒp\in E'

  • If nโ‰ฅ1n\geq 1, then let s=min{d(p,qm):1โ‰คmโ‰คn}s=min\{d(p,q_m):1\leq m\leq n\}

    Each d(p,qm)d(p,q_m) is positive and the set is finite, so s>0s>0.

Then (Bs(p)โˆฉE)\{p}=ฯ•(B_s(p)\cap E)\backslash \{p\}=\phi, so pโˆ‰Ep\notin E

EOP

Theorem 2.22 De Morgan's law

(โ‹ƒaEa)c=โ‹‚a(Eac)\left(\bigcup_a E_a\right)^c=\bigcap_a(E^c_a)

Ec=X\EE^c=X\backslash E

Proof:

xโˆˆโˆชaโˆˆAExโ€…โ€ŠโŸบโ€…โ€ŠโˆƒaโˆˆAx\in \cup_{a\in A} E_x\iff \exists a\in A such that xโˆˆEax\in E_a

So xโˆˆ(โ‹ƒaEa)cโ€…โ€ŠโŸบโ€…โ€Šโˆ€aโˆˆA,xโˆ‰Eaโ€…โ€ŠโŸบโ€…โ€Šโˆ€aโˆˆA,xโˆˆEacโ€…โ€ŠโŸบโ€…โ€Šโ‹‚a(Eac)x\in \left(\bigcup_a E_a\right)^c\iff \forall a\in A, x\notin E_a\iff \forall a\in A,x\in E_a^c\iff \bigcap_a(E^c_a)

Theorem 2.23

EE is open โ€…โ€ŠโŸบโ€…โ€Š\iff EcE^c is closed.

Warning: EE is open โ€…โ€ŠโŸบโ€…โ€Š\cancel{\iff} EE is closed. EE is closed โ€…โ€ŠโŸบโ€…โ€Š\cancel{\iff} EE is open.

Example:
ฯ•\phi, R\R is both open and closed. "clopen set"
[0,1)[0,1) is not open and not closed. bad...

Proof:

โ€…โ€ŠโŸธโ€…โ€Š\impliedby Suppose EcE^c is closed. Let xโˆˆEx\in E, so xโˆ‰Ecx\notin E^c

EcE^c is closed and xโˆ‰Ecโ€…โ€ŠโŸนโ€…โ€Šxโˆ‰(Ec)โ€ฒโ€…โ€ŠโŸนโ€…โ€Šโˆƒr>0x\notin E^c\implies x\notin (E^c)'\implies \exists r >0 such that (Br(x)โˆฉEc)\{x}=ฯ•(B_r(x)\cap E^c)\backslash \{x\}=\phi

So ฯ•=(Br(x)โˆฉEc)\{x}=Br(x)โˆฉEc\phi=(B_r(x)\cap E^c)\backslash \{x\}=B_r(x)\cap E^c

So Br(x)โˆˆEB_r(x)\in E

โ€…โ€ŠโŸนโ€…โ€Š\implies

Suppose EE is open

xโˆˆ(Ec)โ€ฒโ€…โ€ŠโŸนโ€…โ€Šโˆ€r>0,(Br(x)โˆฉEc)\{x}โ‰ ฯ•โ€…โ€ŠโŸนโ€…โ€Šโˆ€r>0,(Br(x)โˆฉEc)โ‰ ฯ•โ€…โ€ŠโŸนโ€…โ€Šโˆ€r>0,Bโˆ’r(x)โˆ‰Eโ€…โ€ŠโŸนโ€…โ€Šxโˆ‰Eโˆ˜โ€…โ€ŠโŸนโ€…โ€Šxโˆ‰Eโ€…โ€ŠโŸนโ€…โ€ŠxโˆˆEc\begin{aligned} x\in (E^c)'&\implies \forall r>0, (B_r(x)\cap E^c)\backslash \{x\}\neq \phi\\ &\implies \forall r>0, (B_r(x)\cap E^c)\neq \phi\\ &\implies \forall r>0, B-r(x)\notin E\\ &\implies x\notin E^{\circ}\\ &\implies x\notin E\\ &\implies x\in E^c \end{aligned}

So (Ec)โ€ฒโŠ‚Ec(E^c)'\subset E^c

EOP

Theorem 2.24

An arbitrary union of open sets is open

Proof:

Suppose โˆ€ฮฑ,Gฮฑ\forall \alpha, G_\alpha is open. Let xโˆˆโ‹ƒฮฑGฮฑx\in \bigcup _{\alpha} G_\alpha. Then โˆƒฮฑ0\exists \alpha_0 such that xโˆˆGฮฑ0x\in G_{\alpha_0}. Since Gฮฑ0G_{\alpha_0} is open, โˆƒr>0\exists r>0 such that Br(x)โŠ‚Gฮฑ0B_r(x)\subset G_{\alpha_0} Then Br(x)โŠ‚Gฮฑ0โŠ‚โ‹ƒฮฑGฮฑB_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha

EOP

A finite intersection of open set is open

Proof:

Suppose โˆ€iโˆˆ{1,...,n}\forall i\in \{1,...,n\}, GiG_i is open.

Let xโˆˆโ‹‚i=1nGix\in \bigcap^n_{i=1}G_i, then โˆ€iโˆˆ{1,..,n}\forall i\in \{1,..,n\} and GiG_i is open, so โˆƒri>0\exists r_i>0, such that Bri(x)โŠ‚GiB_{r_i}(x)\subset G_i

Let r=min{r1,...,rn}r=min\{r_1,...,r_n\}. Then โˆ€iโˆˆ{1,...,n}\forall i\in \{1,...,n\}. Br(x)โŠ‚Bri(x)โŠ‚GiB_r(x)\subset B_{r_i}(x)\subset G_i. So Br(x)โŠ‚โ‹ƒi=1nGiB_r(x)\subset \bigcup_{i=1}^n G_i

EOP

The other two can be proved by Theorem 2.22,2.23

Definition 2.26

The closure Eห‰=EโˆชEโ€ฒ\bar{E}=E\cup E'

Remark: Using the definition of Eโ€ฒE', we have, Eห‰={pโˆˆX,โˆ€r>0,Br(p)โˆฉEโ‰ ฯ•}\bar{E}=\{p\in X,\forall r>0,B_r(p)\cap E\neq \phi\}

Definition 2.27

Eห‰\bar {E} is closed.

Proof:

We will show Eห‰c\bar{E}^c is open.

Suppose pโˆˆEห‰cp\in \bar{E}^c. Then by remark, โˆƒr>0\exists r>0 such that Br(p)โˆฉE=ฯ•B_r(p)\cap E=\phi (a)

Furthermore,, we claim Br(p)โˆฉEโ€ฒ=ฯ•B_r(p)\cap E'=\phi (b)

Suppose for contradiction that โˆƒqโˆˆBr(p)โˆฉEโ€ฒ\exists q\in B_r(p)\cap E' By Theorem 2.19, โˆƒs>0\exists s>0 such that Bs(q)โŠ‚Br(p)B_s(q)\subset B_r(p)

Since qโˆˆEโ€ฒ,(Bs(q)โˆฉE)\{q}โ‰ ฯ•q\in E',(B_s(q)\cap E)\backslash \{q\}\neq \phi. This implies Br(p)โˆฉE=ฯ•B_r(p)\cap E=\phi, which contradicts with (a)

This proves (b)

So Eห‰c\bar{E}^c is open

EOP