🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L10

Lecture 10

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Vector Space of Linear Maps 3A

Review

Theorem 3.21 (The Fundamental Theorem of Linear Maps, Rank-nullity Theorem)

Suppose VV is finite dimensional, and TL(V,W)T\in \mathscr{L}(V,W), then range(T)range(T) is finite dimensional (WW don't need to be finite dimensional). and

dim(V)=dim(null(T))+dim(range(T))dim(V)=dim(null (T))+dim(range(T))

Proof:

Let u1,...,umu_1,...,u_m be a basis for null(T)null(T), then we extend to a basis of VV given by u1,...,um,v1,...,vmu_1,...,u_m,v_1,...,v_m, we have dim(V)=m+ndim(V)=m+n. Claim that Tv1,...,TvnTv_1,...,Tv_n forms a basis for range(T)range (T). Need to show

  • Linearly independent. (in Homework 3)

  • These span range(T)range(T).

    Let wrange(T)w\in range(T) the there exists vVv\in V such that Tv=WTv=W, u1,...,um,v1,...,vmu_1,...,u_m,v_1,...,v_m are basis so a1,...,am,b1,...,bn\exists a_1,...,a_m,b_1,...,b_n such that v=a1u1+...+amum+b1v1+...+bnvnv=a_1u_1+...+a_mu_m+b_1v_1+...+b_n v_n. Tv=a1Tu1+...+amTum+b1Tu1+...+bnTvnTv=a_1Tu_1+...+a_mTu_m+b_1Tu_1+...+b_nTv_n.

    Since uknull(T)u_k\in null(T), So Tv1,...,TvnTv_1,...,Tv_n spans range TT and so form a basis. Thus range(T)range(T) is finite dimensional and dim(range(T))=ndim(range(T))=n. So dim(V)=dim(null(T))+dim(range(T))dim(V)=dim(null (T))+dim(range(T))

Theorem 3.22

Suppose V,WV,W are finite dimensional with dim(V)>dim(W)dim(V)>dim(W), then there are no injective maps from VV to WW.

Theorem 3.24

Suppose V,WV,W are finite dimensional with dim(V)<dim(W)dim(V)<dim(W), then there are no surjective maps from VV to WW.

ideas of Proof: relies on Theorem 3.21 dim(null(T))>0dim(null(T))>0

Linear Maps and Linear Systems 3EX-1

Suppose we have a homogeneous linear system * with mm equation and nn variables.

A11x1+...+A1nxn=0...Am1x1+...+Amnxn=0A_{11} x_1+ ... + A_{1n} x_n=0\\ ...\\ A_{m1} x_1+ ... + A_{mn} x_n=0

which is equivalent to

A[x1...xn]=0A\begin{bmatrix} x_1\\...\\x_n \end{bmatrix}=\vec{0}

also equivalent to

T(v)=0, for some TT(v)=0,\textup{ for some }T T(x1,...,xn)=(A11x1+...+A1n,...,Am1x1+...+Amnxn),TL(Rn,Rm)T(x_1,...,x_n)=(A_{11} x_1+ ... + A_{1n},...,A_{m1} x_1+ ... + A_{mn} x_n),T\in \mathscr{L}(\mathbb{R}^n,\mathbb{R}^m)

Solution to * is null(T)null(T).

Proposition 3.26

A homogeneous linear system with more variables than equations has non-zero solutions.

Proof:

Using TT as above, note that since n>mn>m, use Theorem 3.22, implies that TT cannot be injective. So, null(T)null (T) contains a non-zero vector.

Proposition 3.28

An in-homogenous system with more equations than variables has no solutions for some choices of constants. (Ax=bA\vec{x}=\vec{b} for some b\vec{b} this has no solution)

Matrices 3A

Definition 3.29

For m,n>0m,n>0 and m×nm\times n matrix AA is a rectangular array with elements of the F\mathbb{F} given by

A=(A1,1...A1,n......An,1...Am,n)A=\begin{pmatrix} A_{1,1}& ...&A_{1,n}\\ ... & & ...\\ A_{n,1}&...&A_{m,n}\\ \end{pmatrix}

Operations on matrices

Addition:

A+B=(A1,1+B1,1...A1,n+B1,n......An,1+An,1...Am,n+Bm,n)A+B=\begin{pmatrix} A_{1,1}+B_{1,1}& ...&A_{1,n}+B_{1,n}\\ ... & & ...\\ A_{n,1}+A_{n,1}&...&A_{m,n}+B_{m,n}\\ \end{pmatrix}

for A+BA+B, A,BA,B need to be the same size

Scalar multiplication:

λA=(λA1,1...λA1,n......λAn,1...λAm,n)\lambda A=\begin{pmatrix} \lambda A_{1,1}& ...& \lambda A_{1,n}\\ ... & & ...\\ \lambda A_{n,1}&...& \lambda A_{m,n}\\ \end{pmatrix}

Definition 3.39

Fm,n\mathbb{F}^{m,n} is the set of mm by nn matrices.

Theorem 3.40

Fm,n\mathbb{F}^{m,n} is a vector space (over F\mathbb{F}) with dim(Fm,n)=m×ndim(\mathbb{F}^{m,n})=m\times n

Matrix multiplication 3EX-2

Let AA be a m×nm\times n matrix and BB be an n×sn\times s matrix

(A,B)i,j=r=1nAi,rBr,j(A,B)_{i,j}= \sum^n_{r=1} A_{i,r}\cdot B_{r,j}

Claim:

This formula comes from multiplication of linear maps.

Definition 3.44

Linear maps to matrices, let VV, WW, TviTv_i written in terms of wiw_i.

M(T)=(Tv1Tv2...Tvn)M(T)=\begin{pmatrix} Tv_1\vert Tv_2\vert ...\vert Tv_n \end{pmatrix}