🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L20

Lecture 20

Chapter V Eigenvalue and Eigenvectors

Minimal polynomial 5B

Definition 5.24

Suppose VV is finite dimensional, and TL(V)T\in \mathscr{L}(V) is a linear operator, then the minimal polynomial of TT is the unique monic polynomial pp of smallest degree satisfying the p(T)=0p(T)=0.

Theorem 5.22

Suppose VV is finite dimensional TL(V)T\in \mathscr{L}(V), then there exists a unique monic polynomial pP(F)p\in \mathscr{P}(\mathbb{F}) of smallest degree such that p(T)=0p(T)=0. Furthermore deg pdim Vdeg\ p \leq dim\ V

Proof:

Induct on dim Vdim\ V to prove existence.

  • Base case: dim V=0dim\ V=0, i.e V=0V={0}. Then any linear operator on VV is 00 including the II. So use p(z)=1p(z)=1 then p(T)=I=0p(T)=I=0.

  • Inductive step: Suppose the existence holds for all vector spaces with dimension <dim V< dim\ V. and dimV0dim V\neq 0, Toke vV,v0v\in V,v\neq 0. Then the list v,Tv,Tv2,...,Tnv,n=dim Vv,Tv,Tv^2,...,T^n v,n= dim\ V is linearly dependent.

    then we take the smallest mm such that v,Tv,...,Tmvv,Tv,...,T^m v is linearly dependent, then there exists c0,...,cn1c_0,...,c_{n-1} such that c0v+c1Tv+...+cm1Tm1+Tmv=0c_0 v+c_1T_v+...+c_{m-1} T^{m-1}+T^mv=0

    Now we define p(z)=c0+c1z+...+cm1zm1+zm,p(T)v=0p(z)=c_0+c_1z+...+c_{m-1}z^{m-1}+z_m,p(T)v=0, by (c0v+c1Tv+...+cm1Tm1+Tmv=0c_0 v+c_1T_v+...+c_{m-1} T^{m-1}+T^mv=0)

    Moreover, p(T)(Tkv)p(T)(T^k v) let q(z)=zkq(z)=z^k, then p(T)(Tk)=p(T)q(T)(v)=0p(T)(T^k)=p(T)q(T)(v)=0, so Tkvnull(p(T))T^k v\in null(p(T)), thus since v,Tv,..,Tm1vv,Tv,..,T^{m-1}v are linearly independent, thus dim null (p(T))mdim\ null\ (p(T))\geq m.

Note that dim range (p(T))dim Vmdim\ range\ (p(T))\leq dim\ V-m is invariant with respect to TT.

So consider Trange (p(T))T\vert _{range\ (p(T))}, so by the inductive hypothesis, there exists SP(F)S\in \mathscr{P}(\mathbb{F}) with deg pdim range (p(T))deg\ p\leq dim\ range\ (p(T)) such that S(Trange (p(T)))S(T\vert_{range\ (p(T))}). Now consider (SP)P(F)(SP)\in \mathscr{P}(\mathbb{F}) to see this let vVv\in V. then (SP)(T)(v)=(S(T)p(T))(v)=S(T)(p(T)v)=S(T)0=0(SP)(T)(v)=(S(T)p(T))(v)=S(T)(p(T)v)=S(T)0=0

deg Sp=deg S+deg pdim Vdeg\ S p=deg\ S+deg\ p\leq dim\ V

uniqueness: Let pp be the minimal polynomial, then let qL(F)q\in \mathscr{L}(\mathbb{F}) monic with q(T)=0q(T)=0 and deg q=deg pdeg\ q=deg\ p the (pq)(T)=0(p-q)(T)=0 and deg(pq)deg pdeg(p-q)\leq deg\ p but then pq=0    p=qp-q=0 \implies p=q

Finding Minimal polynomials

Idea: Choose vV,v0v\in V,v\neq 0 find mm such that v,Tv,...,Tdim Vvv,Tv,...,T^{dim\ V} v

Find constant (if they exists) such that v0v+c1Tv+...+cdim V1Tdim V1+Tdim V=0v_0v+c_1Tv+...+c_{dim\ V-1} T^{dim\ V-1}+ T^{dim\ V}=0

then if the solution is unique (not always true). then p(z)=v0v+c1Tv+...+cdim V1Tdim V1+Tdim Vp(z)=v_0v+c_1Tv+...+c_{dim\ V-1} T^{dim\ V-1}+ T^{dim\ V} is the minimal polynomial.

Example:

Suppose TL(R5)T\in \mathscr{L}(\mathbb{R}^5) with M(T)=(0000310006010000010000010)M(T)=\begin{pmatrix} 0&0&0&0&-3\\ 1&0&0&0&6\\ 0&1&0&0&0\\ 0&0&1&0&0\\ 0&0&0&1&0\\ \end{pmatrix}

let v=e1,Tv=e2,T2v=e3,T3v=e4,T4v=e5,T5v=3e1+6e2v=e_1,Tv=e_2,T^2v=e_3,T^3 v=e_4, T^4v=e_5, T^5v=-3e_1+6e_2

now T5v6Tv+3v=0T^5v-6Tv+3v=0 this is unique so p(z)=z56z+3p(z)=z^5-6z+3 is the minimal polynomial.

Theorem 5.27

If VV is finite dimensional and TL(V)T\in\mathscr{L}(V), with minimal polynomial pp, then the zeros of pp are (exactly) their eigenvalues.

Theorem 5.29

TL(V)T\in \mathscr{L}(V), pp the minimal polynomial and qP(F)q\in\mathscr{P}(\mathbb{F}), such that q(T)=0q(T)=0, the pp divides qq.

Corollary 5.31

If TL(V)T\in \mathscr{L}(V) with minimal polynomial pp UVU\subseteq V (invariant subspace), then pp is a multiple of TUT\vert_U divides pp.

Theorem 5.32

TT is not invertible     \iff The minimal polynomial has 00 as a constant term.