🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L38

Lecture 38

Chapter VIII Operators on complex vector spaces

Trace 8D

Definition 8.47

For a square matrix AA, the trace of AA is the sum of the diagonal entries denoted tr(A)tr(A).

Theorem 8.49

Suppose AA is m×nm\times n, BB is n×mn\times m matrices, then tr(AB)=tr(BA)tr(AB)=tr(BA).

Proof:

By pure computation.

Theorem 8.50

Suppose TL(V)T\in \mathscr{L}(V) and u1,...,unu_1,...,u_n and v1,...,vnv_1,...,v_n are bases of VV.

tr(M(T,(u1,...,un)))=tr(M(T,(v1,...,vn)))tr(M(T,(u_1,...,u_n)))=tr(M(T,(v_1,...,v_n)))

Proof:

Let A=tr(M(T,(u1,...,un)))A=tr(M(T,(u_1,...,u_n))) and B=tr(M(T,(v1,...,vn)))B=tr(M(T,(v_1,...,v_n))), then there exists CC, invertible such that A=CBC1A=CBC^{-1},

tr(A)=tr((CB)C1)=tr(C1(CB))=tr(B)tr(A)=tr((CB)C^{-1})=tr(C^{-1}(CB))=tr(B)

Definition 8.51

Given TL(V)T\in \mathscr{L}(V) the trace of TT denoted tr(T)tr(T) is given by tr(T)=tr(M(T))tr(T)=tr(M(T)).

Note: For an upper triangular matrix, the diagonal entries are the eigenvalues with multiplicity

Theorem 8.52

Suppose VV is a complex vector space such that TL(V)T\in \mathscr{L}(V), then tr(T)tr(T) is the sum of the eigenvalues counted with multiplicity.

Proof:

Over C\mathbb{C}, there is a basis where M(T)M(T) is upper triangular.

Theorem 8.54

Suppose VV is a complex vector space, n=dim Vn=dim\ V.TL(V)T\in \mathscr{L}(V). Then the coefficient on zn1z^{n-1} in the characteristic polynomial is tr(T)tr(T).

Proof:

(zλ1)(zλn)=zn(λ1+...+λn)zn1+(z-\lambda_1)\dots(z-\lambda_n)=z^{n}-(\lambda_1+...+\lambda_n)z^{n-1}+\dots

Theorem 8.56

Trance is linear

Proof:

  • Additivity
    tr(T+S)=tr(M(T)+M(S))=tr(T)+tr(S)tr(T+S)=tr(M(T)+M(S))=tr(T)+tr(S)
  • Homogeneity tr(cT)=ctr(M(T))=ctr(T)tr(cT)=ctr(M(T))=ctr(T)

Theorem/Example 8.10

Trace is the unique linear functional LF\mathscr{L}\to \mathbb{F} such that tr(ST)=tr(TS)tr(ST)=tr(TS) and tr(I)=dim Vtr(I)=dim\ V

Proof:

Let φ:L(V)F\varphi:\mathscr{L}(V)\to \mathbb{F} be a linear functional such that φ(ST)=φ(TS)\varphi(ST)=\varphi(TS) and φ(I)=n\varphi(I)=n where n=dim Vn=dim\ V. Let v1,...,vnv_1,...,v_n be a basis for VV define Pj,kP_{j,k} to be the operator M(Pj,k)=(000010000)M(P_{j,k})=\begin{pmatrix} 0&0&0\\ 0&1&0\\ 0&0&0 \end{pmatrix}. Note Pj,kP_{j,k} form a basis of L(V)L(V), now we must show φ(Pj,k)=tr(Pj,k)={1 if j=k0 if jk\varphi(P_{j,k})=tr(P_{j,k})=\begin{cases}1\textup{ if }j=k\\0\textup{ if }j \neq k\end{cases}

  • For jkj\neq k φ(Pj,jPj,k)=φ(Pj,k)=0\varphi(P_{j,j}P_{j,k})=\varphi(P_{j,k})=0

    φ(Pj,kPj,j)=φ(Pj,k)=0\varphi(P_{j,k}P_{j,j})=\varphi(P_{j,k})=0

  • For j=kj=k
    φ(Pk,j,Pj,k)=φ(Pk,k)=1\varphi(P_{k,j},P_{j,k})=\varphi(P_{k,k})=1

    φ(Pj,k,Pk,j)=φ(Pj,j)=1\varphi(P_{j,k},P_{k,j})=\varphi(P_{j,j})=1

So φ(I)=φ(P1,1+...+Pn,n)=φ(P1,1)+...+φ(Pn,n)=n\varphi(I)=\varphi(P_{1,1}+...+P_{n,n})=\varphi(P_{1,1})+...+\varphi(P_{n,n})=n

Theorem 8.57

Suppose VV is finite dimensional vector space, then there does not exists S,TL(V)S,T\in \mathscr{L}(V) such that STTS=IST-TS=I. (STTSST-TS is called communicator)

Proof:

tr(STTS)=tr(ST)tr(TS)=tr(ST)tr(ST)=0tr(ST-TS)=tr(ST)-tr(TS)=tr(ST)-tr(ST)=0, since tr(I)=dim Vtr(I)=dim\ V, so STTSIST-TS\neq I

Note: requires finite dimensional.

Chapter ? Multilinear Algebra and Determinants

Determinants ?A

Definition ?.1

The determinant of TL(V)T\in \mathscr{L}(V) is the product of eigenvalues counted with multiplicity.

Definition ?.2

The determinant of a matrix is given by

det(A)=σperm(n)Aσ(1),1...Aσ(n),nsign(σ)det(A)=\sum_{\sigma\in perm(n)}A_{\sigma(1),1}\cdot ...\cdot A_{\sigma(n),n}\cdot sign(\sigma)

perm(σ)=perm(\sigma)= all recordings of 1,...,n1,...,n, number of swaps needed to write σ\sigma