🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L15

Lecture 15

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Products and Quotients of Vector Spaces 3E

Quotient Space

Idea: For a vector space VV and a subspace UU. Construct a new vector space V/UV/U which is elements of VV up to equivalence by UU.

Definition 3.97

For vVv\in V and UU a subspace of VV. Then v+U={v+uuU}v+U=\{v+u\vert u\in U\} is the translate of UU by vv. (also called a coset of UU)

Example

Let UR2U\subseteq \mathbb{R}^2 be U={(x,2x)xR}U=\{(x,2x)\vert x\in \mathbb{R}\}, v=(5,3)R2v=(5,3)\in\mathbb{R}^2, v+U={(x+3.5,2x)xR}v+U=\{(x+3.5, 2x)\vert x\in \R\}

Describe the solutions to (p(x))=x2(p(x))'=x^2, p(x)=13x3+cp(x)=\frac{1}{3}x^3+c. Let uP(R)u\in \mathscr{P}(\mathbb{R}) be the constant functions then the set of solutions to (p(x))=x2(p(x))'=x^2 is 13x3+U\frac{1}{3}x^3+U

Definition 3.99

Suppose UU is a subspace of VV, then the quotient space V/UV/U is given by

V/U={v+UvV}V/U=\{v+U\vert v\in V\}

This is not subset of VV.

Example:

Let UR2U\subseteq \mathbb{R}^2 be U={(x,2x)xR}U=\{(x,2x)\vert x\in \mathbb{R}\}, then R2/U\mathbb{R}^2/U is the set of all lines of slope 22 in R2\mathbb{R}^2

Lemma 3.101

Let UU be a subspace of VV and v,wVv,w\in V then the following are equivalent

a) vwUv-w\in U
b) v+U=w+Uv+U=w+U
c) (v+U)(w+U)ϕ(v+U)\cap(w+U)\neq \phi

Proof:

  • a    ba\implies b

Suppose vwUv-w\in U, we wish to show that v+U=w+Uv+U=w+U.

Let uUu\in U then v+u=w+((vw)+u)w+Uv+u=w+((v-w)+u)\in w+U

So v+Uw+Uv+U\in w+U and by symmetry, w+Uv+Uw+U\subseteq v+U so v+U=w+Uv+U=w+U

  • b    cb\implies c

uϕ    v+U=w+Uϕu\neq \phi \implies v+U=w+U\neq \phi

  • c    ac\implies a

Suppose (v+U)(w+U)ϕ(v+U)\cap (w+U)\neq\phi So let u1,u2Uu_1,u_2\in U be such that v+u1=w+u2v+u_1=w+u_2 but then vw=u2u1Uv-w=u_2-u_1\in U

Definition 3.102

Let UVU\subseteq V be a subspace, define the following:

  • (v+U)+(w+U)=(v+w)+U(v+U)+(w+U)=(v+w)+U
  • λ(v+U)=(λv)+U\lambda (v+U)=(\lambda v)+U

Theorem 3.103

Let UVU\in V be a subspace, then V/UV/U is a vector space.

Proof:

Assume for now that Definition 3.102 is well defined.

  • commutativity: by commutativity on VV.
  • associativity: by associativity on VV.
  • distributive: law by VV.
  • additive identity: 0+U0+U.
  • additive inverse: v+U-v+U.
  • multiplicative identity: 1(v+U)=v+U1(v+U)=v+U

Why is 3.102 well defined.

Let v1,v2,w1,w2Vv_1,v_2,w_1,w_2\in V such that v1+U=v2+Uv_1+U=v_2+U and w1+U=w2+Uw_1+U=w_2+U

Note by lemma 3.101

v1v2Uv_1-v_2\in U and w1w2U    w_1-w_2\in U \implies

(v1+w1)(v2+w2)U    (v_1+w_1)-(v_2+w_2)\in U \implies

(v1+w1)+U=(v2+w2)+U=(v1+U)+(w1+U)=(v2+U)+(w2+U)(v_1+w_1)+U=(v_2+w_2)+U=(v_1+U)+(w_1+U)=(v_2+U)+(w_2+U)

same idea for scalar multiplication.

Definition 3.104

Let UVU\subseteq V. The quotient map is

π:VV/U,π(v)=v+U\pi:V\to V/U, \pi (v)=v+U

Lemma 3.104.1

π\pi is a linear map

Theorem 3.105

Let VV be finite dimensional UVU\subseteq V then dim(V/U)=dim Vdim Udim(V/U)=dim\ V-dim\ U

Proof:

Note null pi=Unull\ pi=U, since if π(v)=0=0+u    vU\pi(v)=0=0+u\iff v\in U

By the Fundamental Theorem of Linear Maps says

dim (range π)+dim (null T)=dim Vdim\ (range\ \pi)+dim\ (null\ T)=dim\ V

but π\pi is surjective, so we are done.

Theorem 3.106

Suppose TL(V,W)T\in \mathscr{L}(V,W) then,

Define T~:V/null TW~\tilde{T}:V/null\ T\to \tilde{W} by T~(v+null T)\tilde{T}(v+null\ T) Then we have the following.

  1. T~π=T\tilde{T}\circ\pi =T
  2. T~\tilde{T} is injective
  3. rangeT~=range Trange \tilde{T}=range\ T
  4. V/null TV/null\ T and range Trange\ T are isomorphic