🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L19

Lecture 19

Chapter V Eigenvalue and Eigenvectors

Invariant Subspaces 5A

Proposition 5.11

Suppose TL(V)T\in \mathscr{L}(V), let v1,...,vnv_1,...,v_n be eigenvectors for distinct eigenvalues λ1,...,λm\lambda_1,...,\lambda_m. Then v1,...,vnv_1,...,v_n is linearly independent.

Proof:

Suppose v1,...,vmv_1,...,v_m is linearly dependent, we can assume that v1,...,vm1v_1,...,v_{m-1} is linearly independent. So let a1,...,ama_1,...,a_{m} not all =0=0. such that a1v1+...+anvm=0a_1v_1+...+a_nv_m=0, then we apply (TλmI)(T-\lambda_m I) (map vnv_n to 0)

(TλmI)vk=(λkλm)vk(T-\lambda_m I)v_k=(\lambda_k-\lambda_m)v_k

so

(TλmI)=a1(λ1λm)v1+...+am1(λm1λm)vm(T-\lambda_m I)=a_1(\lambda_1-\lambda_m)v_1+...+a_{m-1}(\lambda_{m-1}-\lambda_{m})v_m

but not all of the a1,...,am1a_1,...,a_{m-1} are zero and λkλm0\lambda_k-\lambda_m\neq 0 for 1kλ1\leq k\leq \lambda so they must be linearly independent.

Theorem 5.12

Suppose dim V=ndim\ V=n and TL(V)T\in \mathscr{L}(V) then TT has at most nn distinct eigenvalues

Proof:

Since dim V=ndim\ V=n no linearly independent list has length than nn so by Proposition 5.11, there are at most nn distinct eigenvalues.

Polynomials on operators

p(z)=z+3z+z3P(R)p(z)=z+3z+z^3\in \mathscr{P}(\mathbb{R})

let T=(1101)L(R2)T=\begin{pmatrix} 1&1\\ 0&1 \end{pmatrix}\in \mathscr{L}(\mathbb{R}^2)

P(T)=2I+3T+T3=2I+3T+(1301)=(6406)P(T)=2I+3T+T^3=2I+3T+\begin{pmatrix} 1&3\\ 0&1 \end{pmatrix}=\begin{pmatrix} 6&4\\ 0&6 \end{pmatrix}

Notation

Tm=TT...TTT^m=TT...TT (m times) TT must be an operator within the same space

T0=IT^0=I

Tm=(T1)mT^{-m}=(T^{-1})^m (where TT is invertible)

if pP(F)p\in \mathscr{P}(\mathbb{F}) with p(z)=i=0naizip(z)=\sum_{i=0}^na_iz^i and TL(V)T\in \mathscr{L}(V) VV is a vector space over F\mathbb{F}

p(T)i=0naiTip(T)\sum_{i=0}^na_iT^i

Lemma 5.17

Given p,qP(F)p,q\in \mathscr{P}(\mathbb{F}), TL(V)T\in \mathscr{L}(V)

then

a) (pq)T=p(T)q(T)(pq)T=p(T)q(T)
b) p(T)q(T)=q(T)p(T)p(T)q(T)=q(T)p(T)

Theorem 5.18

Suppose TL(V),pP(F)T\in \mathscr{L}(V),p\in \mathscr{P}(\mathbb{F}), then null (P(T))null\ (P(T)) and range (P(T))range\ (P(T)) are invariant with respect to TT.

5B The Minimal Polynomial

Theorem 5.15

Every operator on finite dimensional complex vector space has at least on eigenvalues.

Proof:

Let dim V=n,TL(V),vVdim\ V=n,T\in \mathscr{L}(V), v\in V be a nonzero vector.

Now consider v,Tv,T2v,...,Tnvv,Tv,T^2 v,...,T^n v. Since this list is of length n+1n+1, there is a linear dependence. Let mm be the smallest integer such that v,Tv,..Tmvv,Tv,..T^m v is linearly dependent, then

a0v+a1Tv+...+amTmv=0a_0 v+a_1Tv+...+a_m T^m v=0

Let p(z)=a0+a1z+...+amzmp(z)=a_0+a_1 z+...+a_m z^m, then p(T)(v)=0,p(z)0p(T)(v)=0,p(z)\neq 0

p(z)p(z) factors as (zλ)q(z)(z-\lambda) q(z) where degree q<degree pdegree\ q< degree\ p

p(T)(v)=((TλI)q(T))(v)=0p(T)(v)=((T-\lambda I)q(T))(v)=0 (TλI)(q(T)(v))=0(T-\lambda I)(q(T)(v))=0

but mm was minimal so that p(z)=a0+a1z+...+amzmp(z)=a_0+a_1 z+...+a_m z^m were linearly independent, so q(T)(v)0q(T)(v)\neq 0, so λ\lambda is an eigenvalue with eigenvector q(T)(v)q(T)(v)

Definition 5.24

Suppose VV is finite dimensional TL(V),pP(F)T\in\mathscr{L}(V),p\in \mathscr{P}(\mathbb{F}), then the minimal polynomial is the unique monic (the coefficient of the highest degree is 1) polynomial of minimal degree such that p(T)=0p(T)=0

Theorem 5.27

Let VV be finite dimensional, and TL(V)T\in\mathscr{L}(V), p(z)p(z) the minimal polynomial.

  1. The roots of p(z)p(z) are exactly the eigenvalues of TT.
  2. If F=C\mathbb{F}=\mathbb{C}, p(z)=(zλ1)...(zλm)p(z)=(z-\lambda_1)...(z-\lambda_m) where λ1,...,λm\lambda_1,...,\lambda_m are all the eigenvalues.