🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L36

Lecture 36

Chapter VIII Operators on complex vector spaces

Generalized Eigenvectors and Nilpotent Operators 8A

If TLT\in \mathscr{L}, is an linear operator on VV and n=dim Vn=dim\ V.

{0}null Tnull T2null Tn=null Tn+1\{0\}\subset null\ T\subset null\ T^2\subset \dots\subset null\ T^n=null\ T^{n+1}

Definition 8.14

TT is called a nilpotent operator if null Tn=Vnull\ T^n=V. Equivalently, there exists k>0k>0 such that Tk=0T^k=0

Lemma 8.16

TT is nilpotent     0\iff 0 is the only eigenvalue of TT.

If F=C\mathbb{F}=\mathbb{C}, then 00 is the only eigenvalue     T\implies T is nilpotent.

Proof:

If TT is nilpotent, then Tk=0T^k=0 for some kk. The minimal polynomial of TT is zm=0z^m=0 for some mm. So 00 is the only eigenvalue.

over C\mathbb{C}, the eigenvalues are all the roots of minimal polynomial.

Proposition 8.17

The following statements are equivalent:

  1. TT is nilpotent.
  2. The minimal polynomial of TT is zmz^m for some m1m\geq 1.
  3. There is a basis of VV such that the matrix of TT is upper triangular with 00 on the diagonal ((000)\begin{pmatrix}0&\dots&*\\ &\ddots& \\0 &\dots&0\end{pmatrix}).

Generalized Eigenspace Decomposition 8B

Let TL(V)T\in \mathscr{L}(V) be an operator on VV, and λ\lambda be an eigenvalue of TT. We want to study TλIT-\lambda I.

Definition 8.19

The generalized eigenspace G(λ,T)={(TλI)kv=0 for some k1}G(\lambda, T)=\{(T-\lambda I)^k v=0\textup{ for some }k\geq 1\}

Lemma 8.20

G(λ,T)=null (TλI)dim VG(\lambda, T)=null\ (T-\lambda I)^{dim\ V}

Proposition 8.22

If F=C\mathbb{F}=\mathbb{C}, λ1,...,λm\lambda_1,...,\lambda_m all the eigenvalues of TLT\in \mathscr{L}, then

(a) G(λi,T)G(\lambda_i, T) is invariant under TT.
(b) (Tλ1)G(λ1,T)(T-\lambda_1)\vert_{G(\lambda_1,T)} is nilpotent.
(c) V=G(λ1,T)...G(λm,T)V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T)

Proof:

(a) follows from TT commutes with Tλ1IT-\lambda_1 I. If (Tλ1I)k=0(T-\lambda_1 I)^k=0, then (TλiT)kT(v)=T((TλiT)kv)=0(T-\lambda_i T)^k T(v)=T((T-\lambda_i T)^kv)=0

(b) follow from lemma

(c) V=G(λ1,T)...G(λm,T)V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T)

  1. VV has a basis of generalized eigenvectors     V=G(λ1,T)+...+G(λm,T)\implies V=G(\lambda_1,T)+...+G(\lambda_m,T)
  2. If there exists viG(λi,T)v_i\in G(\lambda_i,T), and v1+...+vm=0v_1+...+v_m=0, then vi=0v_i=0 for each ii. Because the generalized eigenvectors from distinct eigenvalues are linearly independent, V=G(λ1,T)...G(λm,T)V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T).

Definition 8.23

Let λ\lambda be an eigenvalue of TT, the multiplicity of λ\lambda is defined as mul(x):=dim G(λ,T)=dim null (TλI)dim Vmul(x):= dim\ G(\lambda, T)=dim\ null\ (T-\lambda I)^{dim\ V}

Lemma 8.25

If F=C\mathbb{F}=\mathbb{C},

i=1nmul (λi)=dim V\sum^n_{i=1} mul\ (\lambda_i)=dim\ V

Proof from proposition part (c).

Definition 8.26

If F=C\mathbb{F}=\mathbb{C}, we defined the characteristic polynomial of TT to be

q(z):=(zλ1)mul (λ1)(zλm)mul (λm)q(z):=(z-\lambda_1)^{mul\ (\lambda_1)}\dots (z-\lambda_m)^{mul\ (\lambda_m)}

deg q=dim Vdeg\ q=dim\ V, and roots of qq are eigenvalue of VV.

Theorem 8.29 Cayley-Hamilton Theorem

Suppose F=C\mathbb{F}=\mathbb{C}, TL(V)T\in \mathscr{L}(V), and qq is the characteristic polynomial of TT. Then q(T)=0q(T)=0.

Proof:

q(T)L(V)q(T)\in \mathscr{L}(V) is a linear operator. To show q(T)=0q(T)=0 it is enough to show q(T)v1=0q(T)v_1=0 for a basis v1,...,vnv_1,...,v_n of VV.

Since VV is a sum of vectors in G(λ1,T),...,G(λm,T)G(\lambda_1, T),...,G(\lambda_m,T).

q(T)=(Tλ1I)d1(TλmI)dmq(T)=(T-\lambda_1 I)^{d_1}\dots (T-\lambda_m I)^{d_m}

The operators on the right side of the equation above all commute, so we can move the factor (TλkI)dk(T-\lambda_k I)^{d_k} to be the last term in the expression on the right. Because (TλkI)dkG(λk,T)=0(T-\lambda_k I)^{d_k}\vert_{G(\lambda_k,T)}= 0, we have q(T)G(λk,T)=0q(T)\vert_{G(\lambda_k,T)} = 0, as desired.

Theorem 8.30

Suppose F=C\mathbb{F}=\mathbb{C}, TL(V)T\in \mathscr{L}(V). Then the characteristic polynomial of TT is a polynomial multiple of the minimal polynomial of TT.