๐ŸŽ‰ ไปŽ330่ฝฌไธบWashUๅธฎๅŠฉๆ‰‹ๅ†Œๅ•ฆ!

Math429
ๆจกๅ—
Math429 L7

Lecture 7

Chapter II Finite Dimensional Subspaces

Dimension 2C

Intuition: R2\mathbb{R}^2 is two dimensional. Rn\mathbb{R}^n is nn dimensional.

Definition 2.35

The dimension of a finite dimensional vector space denoted dim(V)dim(V) is the length of any basis of VV.

Potential issue:

  • Why does it not matter which basis I take...

Theorem 2.34

Any two basis of a finite dimensional vector spaces have the same length.

Proof:

Let VV be a finite dimensional vector space, and let B1,B2B_1,B_2 (list of vectors) be two basis of VV. B1B_1 is linearly independent and B2B_2 spans VV, so by (Theorem 2.22) the length of B1B_1 is less than or equal to B2B_2, By symmetry the length of B2B_2 is less than or equal to the length of B1B_1 so length of B1B_1 = length of B2B_2.

Examples:

dim{F2}=2dim\{\mathbb{F}^2\}=2 because (0,1),(1,0)(0,1),(1,0) forms a basis

dim{Pm}=m+1dim\{\mathscr{P}_m\}=m+1 because z0,...,zmz^0,...,z^m forms a basis

dimC{C}=1dim_{\mathbb{C}}\{\mathbb{C}\}=1 as a C\mathbb{C} vector space, because 11 forms a basis

dimR{C}=2dim_{\mathbb{R}}\{\mathbb{C}\}=2 as a R\mathbb{R} vector space, because 1,i1,i forms a basis

Proposition 2.37

If a vector space is finite dimensional, then every linearly independent list of length dim{V}dim\{V\} is a basis.

Proposition 2.42

If a vector space is finite dimensional, then every spanning list of length dim{V}dim\{V\} is a basis for VV.

Sketch of Proof:

If it's not a basis, extend reduce to a basis, but then that contradicts with Theorem 2.34

Proposition 2.39

If UU is a subspace of a finite dimensional vector space VV and dim{V}=dim{U}dim\{V\}=dim\{U\} then U=VU=V

Proof:

Suppose u1,...,unu_1,...,u_n is basis for UU, then it is linearly independent in VV. but dim{V}=dim{U}dim\{V\}=dim\{U\}, by Proposition 2.37, u1,...,unu_1,...,u_n is a basis of VV.

So U=VU=V.

Theorem 2.43

Let V1V_1 and V2V_2 be subspaces of a finite dimensional vector space VV, then dim{V1+V2}=dim{V1}+dim{V2}โˆ’dim{V1โ‹‚V2}dim\{V_1+V_2\}=dim\{V_1\}+dim\{V_2\}-dim\{V_1\bigcap V_2\}

Proof:

Let u1,...,umu_1,...,u_m be a basis for V1โ‹‚V2V_1\bigcap V_2,
then extend by v1,...,vk,u1,...,umv_1,...,v_k,u_1,...,u_m to a basis of V1V_1,
then extend to u1,...,um,w1,..,wlu_1,...,u_m,w_1,..,w_l a basis of V2V_2.

Then I claim v1,...,vk,u1,...,um,w1,...,wlv_1,...,v_k,u_1,...,u_m,w_1,...,w_l is a basis of V1+V2V_1+V_2

Note: given the above statement, we have dim{V1+V2}=k+m+l=(k+m)+(m+l)โˆ’m=dim{V1}+dim{V2}โˆ’dim{V1โ‹‚V2}dim\{V_1+V_2\}=k+m+l=(k+m)+(m+l)-m=dim\{V_1\}+dim\{V_2\}-dim\{V_1\bigcap V_2\}

So showing v1,...,vk,u1,...,um,w1,...,wlv_1,...,v_k,u_1,...,u_m,w_1,...,w_l is a basis suffices.

Since V1,V2โŠ†Span{v1,...,vk,u1,...,um,w1,...,wl}V_1,V_2\subseteq Span\{v_1,...,v_k,u_1,...,u_m,w_1,...,w_l\}, V1+V2โŠ†Span{v1,...,vk,u1,...,um,w1,...,wl}V_1+V_2\subseteq Span\{v_1,...,v_k,u_1,...,u_m,w_1,...,w_l\}.

Since V1+V2V_1+V_2 is the smallest subspace contains both V1,V2V_1,V_2, vi,uk,wjโˆˆV1+V2v_i,u_k,w_j\in V_1+V_2, V1+V2=Span{v1,...,vk,u1,...,um,w1,...,wl}V_1+V_2= Span\{v_1,...,v_k,u_1,...,u_m,w_1,...,w_l\}

So the list above spans V1+V2V_1+V_2.

Suppose a1v1+...+akvk=โˆ’b1u1โˆ’...โˆ’bmumโˆ’c1w1โˆ’...โˆ’cewlโˆˆV1โ‹‚V2a_1 v_1+...+a_k v_k=-b_1 u_1-...-b_m u_m-c_1 w_1-...- c_e w_l\in V_1\bigcap V_2...