🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L21

Lecture 21

Chapter V Eigenvalue and Eigenvectors

Minimal polynomial 5B

Odd Dimensional Real Vector Spaces

Theorem 5.34

Let VV be an odd dimensional real vector space and TL(V)T\in \mathscr{L}(V) a linear operator then TT has an eigenvalue.

Theorem 5.33

Let F=R\mathbb{F}=\mathbb{R}, VV be a finite dimensional vector space. TL(V)T\in\mathscr{L}(V) then dim null (T2+bT+cI)dim\ null\ (T^2+bT+cI) is even for b24cb^2\leq 4c.

Proof:

null (T2+bT+cI)null\ (T^2+bT+cI) is invariant under TT, so it suffices to consider V=null (T2+bT+cI)V=null\ (T^2+bT+cI). Thus T2+bT+cI=0T^2+bT+cI=0.

Suppose λR\lambda \in \mathbb{R} and vVv\in V such that Tv=λvTv=\lambda v, then if v0v\neq 0, then zλz-\lambda must divide z2+bz+cz^2+bz+c. but z2+bz+cz^2+bz+c does not factor over R\mathbb{R}. Then we don't have eigenvalues.

Let UU be the largest invariant subspace of even dimension. Suppose wVw\in V and wUw\cancel{\in} U consider W=Span (w,Tw)W=Span\ (w,Tw) note dim (w)=2dim\ (w)=2. Consider dim(U+W)=dimU+dimWdim(UW)dim(U+W)=dim U+dim W-dim(U\cap W).

So if dim(UW)=2dim(U\cap W)=2 then wUw\in U, which is a contradiction (wUw\cancel{\in} U).

If dim(UW)=1dim(U\cap W)=1 then UWU\cap W invariant and gives an eigenvalue, which is a contradiction (don't have eigenvalues).

If dim(UW)=0dim(U\cap W)=0 U+WU+W is a larger even dimensional invariant subspace, which is a contradiction (UU be the largest invariant subspace of even dimension).

So U=VU=V, dim Vdim\ V is even.

Upper Triangular Matrices 5C

Definition 5.38

A square matrix is upper triangular if all entries below the diagonal are zero.

Example:

(123034005)\begin{pmatrix} 1& 2& 3\\ 0& 3 &4\\ 0& 0& 5 \end{pmatrix}

Theorem 5.39

Suppose TL(V)T\in \mathscr{L}(V) and v1,...,vnv_1,...,v_n is a basis, then the following are equal:

a) M(T,(v1,...,vn))M(T,(v_1,...,v_n)) is upper triangular
b) Span (v1,...,vn)Span\ (v_1,...,v_n) is invariant k=1,...,n\forall k=1,...,n
c) TvkSpan (v1,...,vn)Tv_k\in Span\ (v_1,...,v_n) k=1,...,n\forall k=1,...,n

Sketch of Proof:

a)    \impliesc) is clear... (probably) b)    \iff c), then do c)    \impliesa), go step by step and construct M(T,(v1,...,vn))M(T,(v_1,...,v_n)).

Theorem 5.41

Suppose TL(V)T\in\mathscr{L}(V) if there exists a basis where M(T)M(T) is upper triangular with diagonal entries λ1,...,λn\lambda_1,...,\lambda_n, and (Tλ1I)(Tλ2I)...(TλnI)=0(T-\lambda _1 I)(T-\lambda_2 I)...(T-\lambda_n I)=0, then λ1,...,λn\lambda_1,...,\lambda_n are precisely the eigenvalues.

Proof:

Note that for (Tλ1I)v1=0(T-\lambda_1 I)v_1=0, consider (TλkI)vkSpan (v1,...,vk1)(T-\lambda_k I)v_k\in Span\ (v_1,...,v_{k-1}), consider w=Span (v1,...,vk)w=Span\ (v_1,...,v_k) then (TλkI)w(T-\lambda_k I)\vert_w is not injective since range (TλkI)w=Span (v1,...,vk1)range\ (T-\lambda_k I)\vert_w=Span\ (v_1,...,v_{k-1}), so λk\lambda_k is an eigenvalue.

but the minimal polynomial divides (zλ1)...(zλn)(z-\lambda_1)...(z-\lambda_n), so every eigenvalue is in.

Theorem 5.40

Suppose TL(V)T\in\mathscr{L}(V) if there exists a basis where M(T)M(T) is upper triangular with diagonal entries λ1,...,λn\lambda_1,...,\lambda_n, then (Tλ1I)(Tλ2I)...(TλnI)=0(T-\lambda _1 I)(T-\lambda_2 I)...(T-\lambda_n I)=0.

Proof:

Note that for (Tλ1I)v1=0(T-\lambda_1 I)v_1=0 and TvkSpan (v1,...,vk)Tv_k\in Span\ (v_1,...,v_k), and Tvk=λkvk+...+λ1v1Tv_k=\lambda_k v_k+...+\lambda_1 v_1, (TλkI)Span (v1,...,vk)(T-\lambda_k I)\in Span\ (v_1,...,v_k)