🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L28

Lecture 28

Chapter VI Inner Product Spaces

Orthonormal basis 6B

Example:

Find a polynomial qP2(R)q\in \mathscr{P}_2(\mathbb{R}) such that

11p(t)cos(πt)dt=11p(t)q(t)dt\int^1_{-1}p(t)cos(\pi t)dt=\int^1_{-1}p(t)q(t)dt

for pP2(R)p\in \mathscr{P}_2(\mathbb{R})

note that φ(p)=11p(t)cos(πt)cos(πt)dt\varphi(p)=\int^1_{-1}p(t)cos(\pi t)cos(\pi t)dt is a linear functional. Thus by Riesz Representation Theorem, \exists unique qq such that φ(p)=p,q=11pq\varphi (p)=\langle p,q \rangle=\int^1_{-1}pq

q=φ(e0)e0+φ(ez)ezq=\overline{\varphi(e_0)}e_0+\overline{\varphi(e_z)}e_z

where e0,e1,eze_0,e_1,e_z is an orthonormal basis.

and q=152π2(13x2)q=\frac{15}{2\pi^2}(1-3x^2)

Orthogonal Projection and Minimization

Definition 6.46

If UU is a subset of VV, then the orthogonal complement of UU denoted UU^\perp

U={vVu,v=0,uU}U^\perp=\{v\in V\vert \langle u,v\rangle =0,\forall u\in U\}

The set of vectors orthogonal to every vector in UU.

Theorem 6.48

Let UU be a subset of VV.

(a) UU^\perp is a subspace of VV.
(b) {0}=V\{0\}^\perp=V
(c) V={0}V^\perp =\{0\}
(d) UU{0}U\cap U^\perp\subseteq\{0\}
(e) If G,HG,H subsets of VV with GHG\subseteq H, then HGH^\perp\subseteq G^\perp

Example:

Two perpendicular line in 2D plane.

Let e1,...,eme_1,...,e_m be an orthonormal list, let u=Span(e1,...,em)u=Span(e_1,...,e_m) How do I find UU^\perp?

Extend to an orthonormal basis e1,...,em,f1...,fne_1,...,e_m,f_1...,f_n. U=Span(f1,...,fn)U^\perp=Span(f_1,...,f_n)

Theorem 6.40

Suppose UU is finite dimensional subspace of VV, then V=UUV=U\oplus U^\perp

Proof:

Note UU={0}U\cap U^\perp=\{0\}, so it suffices to show U+U=VU+U^\perp=V. Fix an orthonormal basis e1,...,eme_1,...,e_m of UU. Let vVv\in V, let u=v,e1e1+...+v,ememu=\langle v,e_1\rangle e_1+...+\langle v,e_m\rangle e_m let w=vuw=v-u, then v=u+Wv=u+W we need to check that wUw\in U^\perp

w,ek=v,eku,ek=v,ekv,ek=0\langle w,e_k \rangle=\langle v,e_k\rangle-\langle u,e_k\rangle=\langle v,e_k\rangle-\langle v,e_k\rangle=0

So wUw\in U^\perp

Corollary 6.51

dim U=dim Vdim Udim\ U^\perp=dim\ V-dim\ U

Theorem 6.52

Let UU be a finite dimensional of a vector space VV. Then (U)=U(U^\perp)^\perp=U

Proof:

First let uUu\in U we want to show u(U)u\in (U^\perp)^\perp, then u,w=0\langle u,w \rangle=0 for all wUw\in U^\perp but then u(U)u\in (U^\perp)^\perp

Exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxercise on the other directiononoooonononon.

Corollary 6.54

U={0}    U=VU^\vert=\{0\}\iff U=V

Proof:

(U)={0}    U=V(U^\perp)^\perp=\{0\}^\perp\implies U=V

Definition 6.55

Given UU a finite dimensional subspace of VV. The orthogonal projection of VV onto UU is the operator PuL(V)P_u\in \mathscr{L}(V) defined by: For each vv write v=u+wv=u+w where uUu\in U and wUw\in U^\perp then Puv=uP_u v=u

Formula:

Let e1,...,ene_1,...,e_n an orthonormal basis of UU.

Puv=v,e1e1+...+v,ememP_u v=\langle v,e_1\rangle e_1+...+\langle v,e_m\rangle e_m

Theorem 6.57

(a) PuP_u is linear.
(b) Puu=U,uUP_u u=U,\forall u\in U
(c) Puw=0,wUP_u w=0,\forall w\in U^\perp
(d) range Pu=Urange\ P_u=U
(e) null Pu=Unull\ P_u=U^\vert
(f) vPuvUv-P_u v\in U^\perp
(g) Pu2=PuP_u^2=P_u
(h) Puvv||P_u v||\leq ||v||

Proof:

(a) Let v,vVv,v'\in V and suppose v=u+w,v=u+wv=u+w,v'=u'+w', then v+u=(u+u)+(w+w)v+u'=(u+u')+(w+w') this implies that Pu(v+v)=u+u=Puv+PuvP_u(v+v')=u+u'=P_u v+ P_u v'

...

Theorem 6.58 Riesz Representation Theorem

Let VV be a finite dimensional vector space for vVv\in V define φvV\varphi_v\in V' by φv(u)=u,v\varphi_v(u)=\langle u,v \rangle. Then the map vφvv\to \varphi_v is a bijection.

Proof:

Surjectivity Ideal is let w(null φ)w\in (null\ \varphi)^\perp

v=φ(w)w2w,φ(v)=v2v=\frac{\varphi(w)}{||w||^2}w,\varphi(v)=||v||^2

make sense φv=φ\varphi_v=\varphi