🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L31

Lecture 31

Chapter VII Operators on Inner Product Spaces

Assumption: V,WV,W are finite dimensional inner product spaces.

Self adjoint and Normal Operators 7A

Definition 7.10

An operator TL(V)T\in\mathscr{L}(V) is self adjoint if T=TT=T^*. ie. Tv,u=v,Tu\langle Tv,u\rangle=\langle v,Tu \rangle for u,vVu,v\in V.

Example:

Consider M(T)=(2ii3)M(T)=\begin{pmatrix} 2 & i\\ -i& 3 \end{pmatrix}, Then

M(T)=M(T)=(2ˉ,iˉiˉ,3ˉ)=(2ii3)=M(T)M(T^*)=M(T)^*=\begin{pmatrix} \bar{2},\bar{-i}\\ \bar{i},\bar{3} \end{pmatrix}=\begin{pmatrix} 2 &i\\ -i& 3 \end{pmatrix}=M(T)

So T=TT=T^* so TT is self adjoint

Theorem 7.12

Every eigenvalue of a self adjoint operator TT is real.

Proof:

Suppose TT is self adjoint and λ\lambda is an eigenvalue of TT, and vv is an eigenvector with eigenvalue λ\lambda.

Consider Tv,v\langle Tv,v\rangle

Tv,v=v,Tv=v,λv=λˉv,v=λˉv2\langle Tv, v\rangle= \langle v, Tv\rangle= \langle v,\lambda v\rangle= \bar{\lambda}\langle v,v\rangle=\bar{\lambda}||v||^2 Tv,v=λv,v=v,v=λv,v=λv2\langle Tv, v\rangle= \langle \lambda v, v\rangle= \langle v, v\rangle= \lambda\langle v,v\rangle=\lambda||v||^2\\

So λ=λˉ\lambda=\bar{\lambda}, so λ\lambda is real.

NoteL (7.12) is only interesting for complex vector spaces.

Theorem 7.13

Suppose VV is a complex inner product space and TL(V)T\in\mathscr{L}(V), then

Tv,v=0 for every vV    T=0\langle Tv, v\rangle =0 \textup{ for every }v\in V\iff T=0

Note: (7.13) is False over real vector spaces. The counterexample is TT the rotation by 90°90\degree operator. ie. M(T)=(0110)M(T)=\begin{pmatrix} 0&-1\\ 1&0 \end{pmatrix}

Proof:

\Rightarrow Suppose u,wVu,w\in V

Tu,w=T(u+w),u+wT(uw),uw4+T(u+iw),u+iwT(uiw),uiw4i=0\begin{aligned} \langle Tu,w \rangle&=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}+\frac{\langle T(u+iw),u+iw\rangle -\langle T(u-iw),u-iw\rangle}{4}i\\ &=0 \end{aligned}

Since ww is arbitrary     Tu=0,uV    T=0\implies Tu=0, \forall u\in V\implies T=0.

Theorem 7.14

Suppose VV is a complex inner product space and TL(V)T\in \mathscr{L}(V) thne

T is self adjoint     Tv,vR for everyvVT \textup{ is self adjoint }\iff \langle Tv, v\rangle \in \mathbb{R} \textup{ for every} v \in V

Proof:

T is self adjoint    TT=0    (TT)v,v=0( by 7.13)    Tv,vTv,v=0    Tv,vT,v=0    Tv,vR\begin{aligned} T\textup{ is self adjoint}&\iff T-T^*=0\\ &\iff \langle (T-T^*)v,v\rangle =0 (\textup{ by \textbf{7.13}})\\ &\iff \langle Tv, v\rangle -\langle T^*v,v \rangle =0\\ &\iff \langle Tv, v\rangle -\overline{\langle T,v \rangle} =0\\ &\iff\langle Tv,v\rangle \in \mathbb{R} \end{aligned}

Theorem 7.16

Suppose TT is a self adjoint operator, then Tv,v=0,vV    T=0\langle Tv, v\rangle =0,\forall v\in V\iff T=0

Proof:

Note the complex case is Theorem 7.13, so assume VV is a real vector space. Let u,wVu,w\in V consider

\Rightarrow

Tu,w=T(u+w),u+wT(uw),uw4=0\langle Tu,w\rangle=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}=0

We set Tw,u=w,Tu=Tu,w\langle Tw,u\rangle=\langle w,Tu\rangle =\langle Tu,w\rangle

Normal Operators

Definition 7.18

An operator TL(V)T\in \mathscr{L}(V) on an inner product space is normal if TT=TTTT^*=T^*T ie. TT commutes with its adjoint

Theorem (7.20)

An operator TT is normal if and only if

Tv=Tv,vV||Tv||=||T^*v||,\forall v\in V

Proof:

The key idea is that TTTTT^*T-TT^* is self adjoint.

(TTTT)=(TT)(TT)=TTTT(T^*T-TT^*)^*=(T^*T)^*-(TT^*)^*=T^*T-TT^*