🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L16

Lecture 16

Chapter IV Polynomials

F\mathbb{F} denotes R\mathbb{R} or C\mathbb{C}


Review

Products and Quotients of Vector Spaces 3E

Theorem 3.107

Let TL(V,W)T\in \mathscr{L}(V,W), then define T~:V/null TW\tilde{T}:V/null\ T\to W, given by T~(v+null T)=Tv\tilde{T}(v+null\ T)=Tv

a) T~π=T\tilde{T}\circ \pi=T where π:V/null T\pi: V/null\ T

b) T~\tilde{T} is injective

c) range T=range T~range\ T=range\ \tilde{T}

d) V/null TV/null\ T and range Trange\ T are isomorphic

Example:

Consider D:PM(F)Pm1(F)D:\mathscr{P}_M(\mathbb{F})\to \mathscr{P}_{m-1}(\mathbb{F}) be differentiation map

DD is surjective by DD is not injective null D=null\ D={constant polynomials}

D~:PM(F)/\tilde{D}:\mathscr{P}_M(\mathbb{F})/ constant polynomials Pm1(F)\to \mathscr{P}_{m-1}(\mathbb{F})

This map (D~\tilde{D}) is injective since range D~=range D=Pm1(F)range\ \tilde{D}=range\ D=\mathscr{P}_{m-1}(\mathbb{F})

D~1:Pm1(F)PM(F)/\tilde{D}^{-1}:\mathscr{P}_{m-1}(\mathbb{F})\to \mathscr{P}_M(\mathbb{F})/ constant polynomials (anti-derivative)


New materials

Complex numbers 1A

Definition 1.1

Complex numbers

z=a+biz=a+bi is a complex number for a,bRa,b\in \mathbb{R}, (Re z=a,Im z=bRe\ z=a,Im\ z=b)

zˉ=abi\bar{z}=a-bi complex conjugate z=a2+b2|z|=\sqrt{a^2+b^2}

Properties 1.n

  1. z+zˉ=2az+\bar{z}=2a
  2. zzˉ=2bz-\bar{z}=2b
  3. zzˉ=z2z\bar{z}=|z|^2
  4. z+w=zˉ+wˉ\overline{z+w}=\bar{z}+\bar{w}
  5. zw=zˉwˉ\overline{zw}=\bar{z}\bar{w}
  6. zˉˉ=z\bar{\bar{z}}=z
  7. az|a|\leq |z|
  8. bz|b|\leq |z|
  9. zˉ=z|\bar{z}|=|z|
  10. zw=zw|zw|=|z||w|
  11. z+wz+w|z+w|\leq |z|+|w|

Polynomials 4A

p(x)=i=0naixip(x)=\sum_{i=0}^{n}a_i x^i

Lemma 4.6

If pp is a polynomial and λ\lambda is a zero of pp, then p(x)=(xλ)q(x)p(x)=(x-\lambda)q(x) for some polynomial q(x)q(x) with deg q=deg p1deg\ q=deg\ p -1

Lemma 4.8

If m=deg p,p0m=deg\ p,p\neq 0 then pp has at most mm zeros.

Sketch of Proof:

Induction using 4.6

Division Algorithm 4B

Theorem 4.9

Suppose p,sP(F),s0p,s\in \mathscr{P}(\mathbb{F}),s\neq 0. Then there exists a unique q,rP(F)q,r\in \mathscr{P}(\mathbb{F}) such that p=sq+rp=sq+r, and deg rdeg sdeg\ r\leq deg\ s

Proof:

Let n=deg p,m=deg sn=deg\ p,m=deg\ s if n<mn< m, we are done q=0,r=pq=0,r=p.

Otherwise (nmn\leq m) consider 1,z,...,zm1,s,zs,...,zrms1,z,...,z^{m-1},s,zs,...,z^{r-m}s. is a basis of Pn(F)\mathscr{P}_n(\mathbb{F}).

Then there exists a unique a1,...,anFa_1,...,a_n\in\mathbb{F} such that p(z)=a0+a1z+...+am1zm1+ams+...+anznms=(a0+a1z+...+am1zm1)+s(am+...+anznm)p(z)=a_0+a_1z+...+a_{m-1}z^{m-1}+a_m s+...+ a_n z^{n-m}s=(a_0+a_1z+...+a_{m-1}z^{m-1})+s(a_m +...+a_n z^{n-m})

let r=(a0+a1z+...+am1zm1),q=(am+...+anznm)r=(a_0+a_1z+...+a_{m-1}z^{m-1}), q=(a_m +...+a_n z^{n-m}) then we are done.

Zeros of polynomial over C\mathbb{C} 4C

Theorem 4.12 Fundamental Theorem of Algorithm

Every non-constant polynomial over C\mathbb{C} has at least one root.

Theorem 4.13

If pP(C)p\in \mathscr{P}(\mathbb{C}) then pp has a unique factorization up to order as p(z)=c(zλ1)(zλm)p(z)=c(z-\lambda_1)(z-\lambda_m) for c,λ1,...,λmCc,\lambda_1,...,\lambda_m\in \mathbb{C}

Sketch of Proof:

(4.12)+(4.6)

Zeros of polynomial over R\mathbb{R} 4D

Proposition 4.14

If pP(C)p\in \mathscr{P}(\mathbb{C}) with real coefficients, then if p(λ)=0p(\lambda )=0 then p(λˉ)=0p(\bar{\lambda})=0

Theorem 4.16 Fundamental Theorem of Algorithm for real numbers

If pp is a non-constant polynomial over R\mathbb{R} the pp has a unique factorization

p(x)=c(xλ1)...(xλm)(x2+b1x+c1)...(x2+bmx+cm)p(x)=c(x-\lambda_1)...(x-\lambda_m)(x^2+b_1 x+c_1)...(x^2+b_m x+c_m)

with bk24ckb_k^2\leq 4c_k