🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L13

Lecture 13

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Matrices 3C

Theorem 3.63

A linear map is invertible if and only if it is injective and surjective.

Example

Consider T:P(F)P(F)T:\mathscr{P}(\mathbb{F})\to \mathscr{P}(\mathbb{F}), T(f)=xfT(f)=xf

TT is injective but not surjective. Since you cannot get constant from multiply xx. So it is not invertible.

Theorem 3.65

Let VV and WW be finite-dimensional with the same dimension, and TL(V,W)T\in\mathscr{L}(V,W), then TT is invertible, if and only if TT is injective if and only if, TT is surjective.

Proof:

Suppose TT is injective, then null T=0null\ T={0}, i.e dim(null T)=0dim(null\ T)=0, since dim V=dim null T+dim range Tdim\ V=dim\ null\ T+dim\ range\ T, we have dim V=dim range Tdim\ V=dim\ range\ T but dim Vdim Wdim\ V\dim\ W, so dim W=dim range Tdim\ W=dim\ range\ T. Thus W=range TW=range\ T. This shows that T injective    T surjectiveT\ injective \implies T\ surjective.

If TT is surjective, then dim range T=dim Wdim\ range\ T=dim\ W but then dim V=dim null T+dim W    dim null T=0dim\ V=dim\ null\ T+dim\ W\implies dim\ null\ T=0, so TT is injective, T surjective    T injectiveT\ surjective\implies T\ injective.

% you cannot see this line....

Theorem 3.68

Suppose V,WV,W finite dimensional dim V=dim Wdim\ V=dim\ W, then for TL(V,W)T\in\mathscr{L}(V,W) and SL(W,V)S\in \mathscr{L}(W,V), then ST=I    TS=IST=I\implies TS=I

Example 3.67

Show that for a polynomial qq with degree mm, there exists a unique polynomial pp of degree mm such that ((x2+5x+7)p)=q((x^2+5x+7)p)''=q

Solution:

Let T:Pm(F)Pm(F)T:\mathscr{P}_m(\mathbb{F})\to \mathscr{P}_m(\mathbb{F}) given by T(p)=((x2+5x+7)p)T(p)=((x^2+5x+7)p)'' by TT is injective since (x2+5x+7)(x^2+5x+7) has degree 2\geq 2 for p0p\neq 0, therefore, pp is surjective. (by Theorem 3.68)

Isomorphisms

Definition 3.69

An isomorphism of vector spaces is a invertible linear map. Two vector spaces V,WV,W are isomorphic if there exists an isomorphism between them.

Notation: VWV\cong W means VV and WW are isomorphic. (Don't use very often, no map is included.)

Example:

Pm(F)\mathscr{P}_m(\mathbb{F}) and Fm+1\mathbb{F}^{m+1} are isomorphic. T:Fm+1Pm(F):T((a0,...,am))=a0+a1x+...+anxnT:\mathbb{F}^{m+1}\to \mathscr{P}_m(\mathbb{F}): T((a_0,...,a_m))=a_0+a_1x+...+a_n x^n

Theorem 3.70

Two finite dimensional vector spaces V,WV,W are isomorphic if and only if dim V=dim Wdim\ V= dim\ W

Ideas of Proof:

\Rightarrow use fundamental theorems of linear map

\Leftarrow Let v1,...,vmVv_1,...,v_m\in V and w1,...,wnWw_1,...,w_n\in W be bases. Then define T:VWT:V\to W by T(vk)=wkT(v_k)=w_k for 1kn1\leq k\leq n

Show TT is invertible by showing TT is injective and surjective.

Theorem 3.71

Let V,WV,W be finite dimensional, let v1,...,vnVv_1,...,v_n\in V and w1,...,wmWw_1,...,w_m\in W be bases. Then the map

M(,(v1,...,vn),(w1,...,wm)):L(V,W)Fm,nM(-,(v_1,...,v_n),(w_1,...,w_m)):\mathscr{L}(V,W)\to \mathbb{F}^{m,n}

TM(T)T\mapsto M(T) or M(,(v1,...,vn),(w1,...,wm))M(-,(v_1,...,v_n),(w_1,...,w_m)) is an isomorphism (M:L(V,W)Fm,nM:\mathscr{L}(V,W)\to \mathbb{F}^{m,n})

Sketch of Proof:

Need to show MM is surjective and injective.

  • Injective: i.e need to show if M(T)=0M(T)=0, then T=0T=0. M(T)=0    Tvk=0,1knM(T)=0\implies Tv_k=0, 1\leq k\leq n
  • Surjective: i.e let AFm,nA\in F^{m,n} define T:VWT:V\to W given by Tvk=j=1mAj,kwjTv_k=\sum_{j=1}^m A_{j,k} w_j you cna check that M(T)=AM(T)=A

Corollary 3.72

dimL(V,W)=(dim V)(dim W)dim \mathscr{L}(V,W)=(dim\ V)(dim\ W)

Definition 3.73

vV,v1,...,vnv\in V, v_1,...,v_n a basis, then M(v)=(b1...bn),v=a1v1,...,anvnM(v)=\begin{pmatrix} b_1\\ ...\\ b_n \end{pmatrix}, v=a_1v_1,...,a_nv_n

Proposition 3.75, 3.76

M(T),k=M(Tvk)M(T)_{\cdot,k}=M(Tv_k) M(Tv)=M(T)M(v)M(Tv)=M(T)M(v)