🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L22

Lecture 22

Chapter V Eigenvalue and Eigenvectors

Upper Triangular Matrices 5C

Theorem 5.44

Let TL(V)T\in \mathscr{L}(V) be a linear operator, then TT has an upper triangular matrix (with respect to some basis), if the minimal polynomial is (zλ1)...(zλm)(z-\lambda_1)...(z-\lambda_m) for λ1,..,λmF\lambda_1,..,\lambda_m\in \mathbb{F}

Proof:

    \implies easy

    \impliedby Suppose the minimal polynomial of TT is (zλ1)...(zλm)(z-\lambda_1)...(z-\lambda_m)

Then we do induction on mm.

Base case: m=1m=1, then Tλ1I=0T-\lambda_1 I=0, T=λIT=\lambda I but λI\lambda I has an upper triangular matrix,

Induction step: m>1m>1, Suppose the results holds for smaller mm. Let u=range(TλmI)u=range(T-\lambda_m I), UU is invariant under TT, consider TuT\vert_u.

Note that if uUu\in U, (Tλ1I)...(Tλm1I)u=(Tλ1I)...(TλmI)v=0(T-\lambda_1 I)...(T-\lambda_{m-1} I)u=(T-\lambda_1 I)...(T-\lambda_m I)v=0. Thus the minimal polynomial of TUT\vert_U divides (zλ1)...(zλm1)(z-\lambda_1)...(z-\lambda_{m-1})

Corollary 5.47 (staring point for Jordan Canonical Form)

Suppose VV is a finite dimensional complex vector space, and TL(V)T\in \mathscr{L}(V), then TT has an upper triangular matrix with respect to some basis.

Recall: TT is upper triangular     \iff TvkSpan (v1,...,vk)Tv_k\in Span\ (v_1,...,v_k). where v1,...,vnv_1,...,v_n is a basis.

Let u1,...,uru_1,...,u_r be a basis for UU such that TukSpan (v1,...,vk)Tu_k\in Span\ (v_1,...,v_k) (such thing exists because TT is upper triangular.

Extend to a basis of VV, u1,..,ur,v1,...,vsu_1,..,u_r,v_1,...,v_s, then

Tvk=((TλmI)+λmI)vk=(TλmI)vk+λmvkTv_k=((T-\lambda_m I)+\lambda_m I)v_k=(T-\lambda_m I)v_k+\lambda_m v_k

and (TλmI)vkU,λmvkSpan (u1,..,ur,vk)(T-\lambda_m I)v_k\in U, \lambda_m v_k\in Span\ (u_1,..,u_r,v_k)

Thus with respect to the same basis u1,..,ur,v1,...,vsu_1,..,u_r,v_1,...,v_s TT is upper triangular.

M(T)=(M(TU)0λ on the diagonal line)M(T)=\begin{pmatrix} M(T\vert_U) &\vert & *\\ \rule{2cm}{1pt}&&\rule{4cm}{0.4pt}\\ 0 & \vert&\lambda \textup{ on the diagonal line} \end{pmatrix}

Example:

M(T)=(201021113)M(T)=\begin{pmatrix} 2&0&1\\ 0&2&1\\ 1&1&3 \end{pmatrix} and the minimal polynomial is (z2)(z2)(z3)(z-2)(z-2)(z-3)

v1=(1,1,0),v2=(1,0,1),v3=(1,1,0)v_1=(1,-1,0), v_2=(1,0,-1), v_3=(-1,1,0)

M(T,(v1,v2,v3))=(210020003)M(T,(v_1,v_2,v_3))=\begin{pmatrix} 2&1&0\\ 0&2&0\\ 0&0&3 \end{pmatrix} which is upper triangular.

5D Diagonalizable Operations

Definition 5.48

A Diagonal matrix is a matrix where all entries except the diagonal is zero

Example: I,0,(200020003)I,0,\begin{pmatrix} 2&0&0\\ 0&2&0\\ 0&0&3 \end{pmatrix}

Definition 5.50

An operator TL(V)T\in\mathscr{L}(V) is diagonalizable if M(T)M(T) is diagonalizable with respect to some basis.

Example:

T:F>F2T:\mathbb{F}->\mathbb{F^2}

M(T)=(3113)v1=(1,1),v2=(1,1)M(T)=\begin{pmatrix} 3&-1\\ -1&3& \end{pmatrix} v_1=(1,-1), v_2=(1,1), T(v1)=(4,4)=4v1,T(v2)=(2,2)=2v2T(v_1)=(4,-4)=4v_1, T(v_2)=(2,2)=2v_2, so the eigenvalues are 22 with eigenvector v2v_2, and 44 with eigenvector v1v_1. The eigenvectors for zz are Span(v2) {0}Span (v_2)\ \{0\}

M(T,(v1,v2))=(4002)M(T,(v_1,v_2))=\begin{pmatrix} 4&0\\ 0&2 \end{pmatrix} and TT is diagonalizable.

Definition 5.52

Let TL(V),λFT\in \mathscr{L}(V),\lambda \in \mathbb{F}. the eigenspace of TT corresponding to λ\lambda is the subspace E(λ,T)VE(\lambda, T)\in V defined by

E(λ,T)=null (TλI)={vVTv=λv}E(\lambda, T)=null\ (T-\lambda I)=\{ v\in V\vert Tv=\lambda v\}

Example:

E(2,T)=Span (v2)E(2,T)=Span\ (v_2) E(4,T)=Span (v1)E(4,T)=Span\ (v_1), E(3,T)={0}E(3,T)=\{0 \}

Theorem 5.54

Suppose TL(V)T\in \mathscr{L}(V) λ1,...,λm\lambda_1,...,\lambda_m are distinct eigenvalues of TT, Then

E(λ1,T)+...+E(λm,T)E(\lambda_1, T)+...+E(\lambda_m,T)

is a direct sum. In particular if VV is finite dimensional.

dim (E(λ1,T))+...+dim (E(λm,T))dim Vdim\ (E(\lambda_1, T))+...+dim\ (E(\lambda_m,T))\leq dim\ V

Proof:

Need to show that if vkE(λk,T)v_k\in E(\lambda_k,T) for k=1,...,mk=1,...,m then v1+...+vm=0    vk=0v_1+...+v_m=0\iff v_k=0 for k=1,...,mk=1,...,m. i.e eigenvectors for distinct eigenvalues are linearly independent. (Prop 5.11)