🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L9

Lecture 9

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Vector Space of Linear Maps 3A

Review

L(V,W)=\mathscr{L}(V,W) = space of linear maps form VV to WW.

L(V)=L(V,V)\mathscr{L}(V)=\mathscr{L}(V,V)

Key facts:

  • L(V,W)\mathscr{L}(V,W) is a vector space
  • given TL(U,V),SL(V,W)T\in\mathscr{L}(U,V),S\in \mathscr{L}(V,W), we have TSL(V,W)TS\in \mathscr{L}(V,W)
  • not commutative

Null spaces and Range 3B

Definition 3.11

Null space and injectivity

For TL(V,W)T\in \mathscr{L}(V,W), the null space of TT, denoted as null(T)null(T) (sometime also noted as ker Tker\ T), is a subset of VV given by

ker T=null(T)={vVTv=0}ker\ T=null(T)=\{v\in V \vert Tv=0\}

Examples:

  • 0L(V,W)0\in \mathscr{L}(V,W), then null 0=Vnull\ 0=V, null(I)={0}null(I)=\{0\}
  • TL(R3,R2),T(x,y,z)=(x+y,y+z)T\in \mathscr{L}(\mathbb{R}^3,\mathbb{R}^2),T(x,y,z)=(x+y,y+z), to find the null space, we set T(x,y,z)=0T(x,y,z)=0, then x+y=0,y+z=0x+y=0,y+z=0, x=y,x=zx=-y,x=z. So null(T)={(x,x,x)R2xR}null(T)=\{(x,-x,x)\in \mathbb{R}^2\vert x\in \mathbb{R}\}
  • Let DL(P(R)),D(f)=fD\in \mathscr{L}(\mathscr{P}(\mathbb{R})),D(f)=f', null(D)=null (D)= the set of constant functions. (because the derivatives of them are zero.)

Theorem 3.13

Given TL(V,W)T\in \mathscr{L}(V,W), null(T)null(T) is a subspace of VV.

Proof:

We check the conditions for the subspace.

  • T0=0T0=0, so 0null(T)0\in null(T)
  • u,vnull(T)u,v\in null(T), then consider T(u+v)=Tu+Tv=0+0=0T(u+v)=Tu+Tv=0+0=0, so u+vnull(T)u+v\in null(T)
  • Let vnull(T),λFv\in null (T),\lambda \in \mathbb{F}, then T(λv)=λ(Tv)=λ0=0T(\lambda v)=\lambda (Tv)=\lambda 0=0, so λvnull(T)\lambda v \in null (T)

So null(T)null(T) is a subspace.

Definition 3.14

A function f:VWf:V\to W is injective (also called one-to-one, 1-1) if for all u,vVu,v\in V, if Tv=TuTv=Tu, then T=UT=U.

Lemma 3.15

Let TL(V,W)T\in \mathscr{L}(V,W) then TT is injective if and only if null(T)={0}null(T)=\{0\}

Proof:

\Rightarrow

Let TL(V,W)T\in \mathscr{L}(V,W) be injective, and let vnull(T)v\in null (T). Then Tv=0=T0Tv=0=T0 so because TT is injective v=0    null(T)={0}v=0\implies null (T)=\{0\}

\Leftarrow

Suppose TL(V,W)T\in \mathscr{L}(V,W) with null(T)={0}null (T)=\{0\}. Let u,vVu,v\in V with Tu=TvTu=Tv, TuTv=0,T(uv)=0,uv=0,u=vTu-Tv=0,T(u-v)=0,u-v=0,u=v, so TT is injective

Definition 3.16

Range and surjectivity

For TL(V,W)T\in \mathscr{L}(V,W) the range of TT denoted range(T)range(T), is given by

range(T)={TvvV}range(T)=\{Tv\vert v\in V\}

Example:

  • 0L(V,W)0\in \mathscr{L}(V,W), range(0)={0}range(0)=\{0\}
  • IL(V,W)I\in \mathscr{L}(V,W), range(I)=Vrange(I)=V
  • Let T:RR2T:\mathbb{R}\to \mathbb{R}^2 given by T(x)=(x,2x)T(x)=(x,2x), range(T)={(x,2x)xR}range(T)=\{(x,2x)\vert x\in \mathbb{R}\}

Theorem 3.18

Given TL(V,W)T\in \mathscr{L}(V,W), range(T)range(T) is a subspace of WW

Proof:

Exercise, not interesting.

Definition 3.19

A function T:VWT:V\to W is surjective (also called onto) if range(T)=Wrange(T)=W

Theorem 3.21 (The Fundamental Theorem of Linear Maps, Rank-nullity Theorem)

Suppose VV is finite dimensional, and TL(V,W)T\in \mathscr{L}(V,W), then range(T)range(T) is finite dimensional (WW don't need to be finite dimensional). and

dim(V)=dim(null(T))+dim(range(T))dim(V)=dim(null (T))+dim(range(T))

Theorem 3.22

Let TL(V,W)T\in \mathscr{L}(V,W) and suppose dim(V)>dim(W)dim(V)>dim(W). Then TT is not injective.

Proof:

By Theorem 3.21, dim(V)=dim(null(T))+dim(range(T))dim(V)=dim(null (T))+dim(range(T)), dim(V)=dim(null(T))+dim(W)dim(V)=dim(null (T))+dim(W), 0<dim(V)dim(W)dim(null(T))    dim(null(T))>0    null(T){0}0<dim (V)-dim(W)\leq dim(null(T))\implies dim(null(T))>0\implies null (T)\neq \{0\}

So TT is not injective.