🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L18

Lecture 18

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Duality 3F


Review

Theorem 3.128, 3.130

Let V,WV,W be a finite dimensional vector space, TL(V,W)T\in \mathscr{L}(V,W)

a) null T=(range T)0null\ T'=(range\ T)^0, dim(null T)=dim null T+dim Wdim Vdim (null\ T')=dim\ null\ T+dim\ W-dim\ V
b) range T=(null T)0range\ T'=(null\ T)^0, dim(range T)=dim(range T)dim (range\ T')=dim (range\ T) c) dim(range\ T')= dim(range\ T)


New materials

Theorem 3.129, 3.131

Let V,WV,W be a finite dimensional vector space, TL(V,W)T\in \mathscr{L}(V,W)

a) TT is injective     T\iff T' is surjective
b) TT is surjective     T\iff T' is injective

Proof:

TT is injective     null T={0}    range T=V    T\iff null\ T=\{0\}\iff range\ T'=V'\iff T' surjective

TT is surjective     range T=W    null T=0    T\iff range\ T=W\iff null\ T'=0\iff T' injective

Theorem 3.132

Let V,WV,W be a finite dimensional vector space, TL(V,W)T\in \mathscr{L}(V,W)

Then M(T)=(M(T))TM(T')=(M(T))^T. Where the basis for M(T)M(T)' are the dual basis to the ones for M(T)M(T)

Theorem 3.133

col rank A=row rank Acol\ rank\ A=row\ rank\ A

Proof: col rank A=col rank (M(T))=dim range T=dim range T=dim range T=col rank (M(T))=col rank (M(T)T)=row rank (M(T))col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^T)=row\ rank\ (M(T))

Chapter V Eigenvalue and Eigenvectors

Invariant Subspaces 5A

Goal: Study maps in L(V)\mathscr{L}(V) (linear operations)

Question: Given TL(V)T\in \mathscr{L}(V) when can I restrict to UVU\subseteq V such that TUL(U)T\vert_U\in \mathscr{L}(U)

Definition 5.2

Suppose TL(V)T\in \mathscr{L}(V) and UVU\subseteq V a subspace is said to be invariant under TT if TuU,uUTu\in U,\forall u\in U

Example:

For any TL(V)T\in \mathscr{L}(V), the following are invariance subspaces.

  1. {0}\{0\}
  2. VV
  3. null Tnull\ T, vnull T    Tv=0null Tv\in null\ T\implies Tv=0\in null\ T
  4. range Trange\ T, vrange TV    Tvrange Tv\in range\ T\subseteq V \implies Tv\in range\ T

Definition 5.5

Suppose TL(V)T\in\mathscr{L}(V), then for λF\lambda \in \mathbb{F} is an eigenvalue of TT if vV\exists v\in V such that v0v\neq 0 and Tv=λvTv=\lambda v.

Definition 5.8

Suppose TL(V)T\in\mathscr{L}(V) and λF\lambda \in \mathbb{F} is an eigenvalue of TT. The vVv\in V is an eigenvector of TT corresponding to λ\lambda if v0v\neq 0 and Tv=λvTv=\lambda v

Note: if λ\lambda is an eigenvalue of TT and vv an eigenvector corresponding to λ\lambda, then U=Span(V)U=Span(V) is an invariant subspace. and TUT\vert_U is multiplication by λ\lambda

Proposition 5.7

VV is finite dimensional TL,λFT\in \mathscr{L},\lambda\in \mathbb{F} then the following are equivalent: (TFAE)

a) λ\lambda is an eigenvalue
b) TλIT-\lambda I is not injective c) TλIT-\lambda I is not surjective d) TλIT-\lambda I is not invertible

Proof:

(a)    \iff (b) λ\lambda is an eigenvalue     vV\iff \exists v\in V such that Tv=λv    vV,v0,(TλI)v=0Tv=\lambda v\iff \exists v\in V, v\neq 0, (T-\lambda I)v=0

Example:

T(x,y)=(y,x)T(x,y)=(-y,x) what are the eigenvalues of TT.

If F=R\mathbb{F}=\mathbb{R} rotation by 90°90\degree, so no eigenvalues.

what if F=C\mathbb{F}=\mathbb{C}? we can solve the system T(x,y)=λ(x,y),(y,x)=λ(x,y)T(x,y)=\lambda (x,y),(-y,x)=\lambda (x,y)

y=λxx=λy-y=\lambda x \\ x=\lambda y

So

1=λ2,λ=±i-1=\lambda ^2,\lambda =\plusmn i

when λ=i\lambda =-i, v=(1,i)v=(1,i), λ=i\lambda=i, v=(1,i)v=(1,-i)