🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L32

Lecture 32

Chapter VII Operators on Inner Product Spaces

Assumption: V,WV,W are finite dimensional inner product spaces.

Spectral Theorem 7B

Recall

Definition 7.10

An operator TL(V)T\in \mathscr{L}(V) is self adjoint if T=TT=T^*

Definition 7.18

AN operator TL(V)T\in\mathscr{L}(V) is normal if TT=TTTT^*=T^*T

Theorem 7.20

Suppose TL(V)T\in \mathscr{L}(V), TT is normal     Tv=Tv\iff ||Tv||=||T^*v||

Lemma 7,26

Suppose TL(V)T\in\mathscr{L}(V) is self adjoint operator and b,cRb,c\in \mathbb{R} such that b2<4cb^2<4c, then

T2+bT+cIT^2+bT+cI

is invertible.

Proof:

Prove T2+bT+cIT^2+bT+cI is injective by showing (T2+bT+cI),v0\langle(T^2+bT+cI),v\rangle\neq 0 (for v0v\neq 0)

(T2+bT+cI),v=T2v,v+bTv,v+cv,v=Tv,Tv+bTv,v+cv2Tv2b Tv v+cv2 by cauchy schuarz=(Tvbv2)2+(cb24)v2>0\begin{aligned} \langle(T^2+bT+cI),v\rangle&=\langle T^2v,v\rangle+\langle bTv,v\rangle+c\langle v,v\rangle\\ &=\langle Tv,Tv\rangle+b\langle Tv,v\rangle +c||v||^2\\ &\geq ||Tv||^2-|b|\ ||Tv||\ ||v||+c||v||^2 \textup{ by cauchy schuarz}\\ &=\left(||Tv||-\frac{b||v||}{2}\right)^2+\left(c-\frac{b^2}{4}\right)||v||^2>0 \end{aligned}

Theorem 7.27

Suppose TL(V)T\in \mathscr{L}(V) is self adjoint. Then the minimal polynomial is of the form (zλ1)...(zλm)(z-\lambda_1)...(z-\lambda_m) for some λ1,...,λmR\lambda_1,...,\lambda_m\in\mathbb{R}

Proof:

F=C\mathbb{F}=\mathbb{C} clear from previous results

F=R\mathbb{F}=\mathbb{R} assume for contradiction q(z)q(z), where b24cb^2\leq 4c. Then P(T)=0P(T)=0 but q(T)0q(T)\neq 0. So let vVv\in V such that q(T)v0q(T)v\neq 0.

then (T2+bT+cI)(q(T)v)=0(T^2+bT+cI)(q(T)v)=0 but T2+bT+cIT^2+bT+cI is invertible so q(T)v=0q(T)v=0 this is a contradiction so p(z)=(zλ1)...(zλm)p(z)=(z-\lambda_1)...(z-\lambda_m)

Theorem 7.29 Real Spectral theorem

Suppose VV is a finite dimensional real inner product space and TL(V)T\in \mathscr{L}(V) then the following are equivalent.

(a) TT is self adjoint.
(b) TT has a diagonal matrix with respect to same orthonormal basis.
(c) VV has an orthonormal basis of eigenvectors of TT

Proof:

b    cb\iff c clear by definition

b    ab\implies a because the transpose of a diagonal matrix is itself.

a    ba\implies b by (Theorem 7.27) there exists an orthonormal basis such that M(T)M(T) is upper triangular. But M(T)=M(T)M(T^*)=M(T) and M(T)=(M(T))M(T^*)=(M(T))^*

but this M(T)M(T) is both upper and lower triangular, so M(T)M(T) is diagonal.

Theorem 7.31 Complete Spectral Theorem

Suppose VV is a complex finite dimensional inner product space. TL(V)T\in \mathscr{L}(V), then the following are equivalent.

(a) TT is normal
(b) TT has a diagonal matrix with respect to an orthonormal basis
(c) VV has an orthonormal basis of eigenvectors of TT.

a    ba\implies b

M(T)=(a1,1a1,n0an,n)M(T)=\begin{pmatrix} a_{1,1}&\dots&a_{1,n}\\ &\ddots &\vdots\\ 0& & a_{n,n} \end{pmatrix}

with respect to an appropriate basis e1,...,ene_1,...,e_n

Then Te12=a1,12||Te_1||^2=|a_{1,1}|^2, Te12=Te12=a1,12+a1,22+...+a1,n2||Te_1||^2=||T^*e_1||^2=|a_{1,1}|^2+|a_{1,2}|^2+...+|a_{1,n}|^2. So a1,2=...=a1,n=0a_{1,2}=...=a_{1,n}=0, without loss of generality, Te22=0||Te_2||^2=0. Repeating this procedure we have M(T)M(T) is diagonal.

Example:

TL(C2)T\in \mathscr{L}(\mathbb{C}^2) M(T)=(2332)M(T)=\begin{pmatrix} 2&-3\\ 3&2 \end{pmatrix}

M(T,(f1,f2))=(2+3c0023c)M(T,(f_1,f_2))=\begin{pmatrix} 2+3c&0\\ 0&2-3c \end{pmatrix}