🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L29

Lecture 29

Chapter VI Inner Product Spaces

Orthogonal Complements and Minimization Problems 6C

Minimization Problems

Theorem 6.61

Suppose UU is a finite dimensional subspace of VV. Let vVv\in V, uUu\in U. Then vPuvvu||v-P_u v||\leq|| v-u||. with equality if and only if u=Puvu=P_u v

Proof:

Using triangle inequality

vPuv2vPuv2+Puvu2=(vPuv)+(Puvu)2=vu2\begin{aligned} ||v-P_u v||^2 &\leq ||v-P_u v||^2+||P_u v-u||^2\\ &=||(v-P_u v)+(P_u v-u)||^2\\ &=||v-u||^2 \end{aligned}

Example:

Find $u(x)\in \mathscr{P}_5(\mathbb{R}) minimizing

ππsin(x)u(x)2dx\int^{\pi}_{-\pi}|sin(x)-u(x)|^2 dx

V=C([π,π])=V=C([-\pi,\pi])= continuous (real valued) function on [π,π][-\pi,\pi]

u=P5(R)u=\mathscr{P}_5(\mathbb{R}). Note UVU\subseteq V and uu is finite dimensional.

f,g=ππfg\langle f,g \rangle=\int^{\pi}_{-\pi}fg gives an inner product on VV.

Minimize sinu2||sin-u||^2, choose an orthonormal basis e0,...,e5e_0,...,e_5 of P5(R)\mathscr{P}_5(\mathbb{R}), so u=Pu(sin)=e0,sine0+...+e5,sine5u=P_u(sin)=\langle e_0,sin\rangle e_0+...+\langle e_5,sin \rangle e_5

Pseudo inverses

Idea: Want to (approximately) solve Tx=bTx=b.

  • If TT is invertible x=T1bx=T^{-1}b
  • If TT is not invertible, want TTT^{T} such that y=TTby=T^{T}b is the "best solution"

Lemma 6.67

If VV is a finite dimensional vector space, TL(V,W)T\in \mathscr{L}(V,W) then Tnull TT\vert_{{null\ T}^\perp} is one to one onto range Trange\ T.

Proof:

Note (null T)V/(null T)(null\ T)^\perp \simeq V/(null\ T)

Exercise, prove this...

If vnull(Tnull)    vnull T,v\in null(T\vert_{{null}^\perp})\implies v\in null\ T, and v(null T)    v=0v\in (null\ T)^\perp\implies v=0

If wrange Tw\in range\ T so vV\exists v\in V such that Tv=wTv=w write vv as v=u+xv=u+x sor unull T,x(null T)u\in null\ T,x\in (null\ T)^\perp.

Definition 6.68

V is a finite dimensional space TL(V,W)T\in \mathscr{L}(V,W). The pseudo-inverse denoted TL(W,V)T^\dag\in \mathscr{L}(W,V) is given by

Tw=(Tnull T)1Prange TwT^\dag w=(T\vert_{{null\ T}^\perp})^{-1}P_{range\ T}w

Some explanation:

Let TL(V,W)T\in \mathscr{L}(V,W).Since there exists isomorphism between (null T)V(null\ T)^\perp\subseteq V and range TWrange\ T\subseteq W.We can always map WW to VV using TL(W,V)T^\dag\in \mathscr{L}(W,V). Prange TP_{range\ T} is the map that Wrange TW\mapsto range\ T and (Tnull T)1(T\vert_{{null\ T}^\perp})^{-1} is a linear map that map wWw\in W

Proposition 6.69

VV is a finite dimensional vector space. TL(V,W)T\in\mathscr{L}(V,W), then

(a) If TT is invertible, then T=T1T^\dag=T^{-1}.
(b) TT=Prange TTT^\dag=P_{range\ T}.
(c) TT=P(null T)T^\dag T=P_{(null\ T)^\perp}.

Theorem 6.70

VV is a finite dimensional vector space. TL(V,W)T\in\mathscr{L}(V,W), for bWb\in W, then

(a) If xVx\in V, then T(Tb)bTxb||T(T^* b)-b||\leq ||Tx-b|| with equality if and only if xTb+null Tx\in T^\dag b+null\ T (TT^\dag is the best solution we can have as "inverse" for non-invertible linear map)

(b) If xTb+null Tx\in T^\dag b+null\ T then

Tbx||T^\dag b ||\leq ||x||

Proof:

(a) Txb=(TxTTb)+(TTbb)Tx-b=(Tx-TT^\dag b)+(TT^\dag b-b)

Using pythagorean theorem, we have

TxbTTbb||Tx-b||\geq ||TT^\dag b-b||

Chapter VII Operators on Inner Product Spaces

Self adjoint and Normal Operators 7A

Definition 7.1

Let TL(V,W)T\in \mathscr{L}(V,W), then the adjoint of TT denoted TT^* is the function T:WVT^*:W\to V such that Tv,w=v,Tw\langle Tv,w \rangle =\langle v,T^* w \rangle

For euclidean inner product TT^* is given by the conjugate transpose.