🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L17

Lecture 17

Chapter III Linear maps

Assumption: U,V,WU,V,W are vector spaces (over F\mathbb{F})

Duality 3F

Definition 3.108

A linear functional on VV is a linear map from VV to F\mathbb{F}.

Definition 3.110

The dual space of V denoted by VV' (Vˇ,V\check{V},V^*) is given by V=L(V,F)V'=\mathscr{L}(V,\mathbb{F}).

The elements of VV' are also called linear functional.

Theorem 3.111

The dim V=dim Vdim\ V'=dim\ V.

Proof:

dim L(V,F)=dim Vdim Fdim\ \mathscr{L}(V,\mathbb{F})=dim\ V\cdot dim\ \mathbb{F}

Definition 3.112

If v1,...,vnv_1,...,v_n is a basis for VV, then the dual basis of v1,..,vnv_1,..,v_n is ψ1,...,ψnV\psi_1,...,\psi_n\in V' where

ψj(vk)={1 if k=i0 if ki\psi_j(v_k)=\begin{cases} 1 \textup{ if }k=i\\ 0 \textup{ if }k\neq i \end{cases}

Example:

V=R3V=\mathbb{R}^3 e1,e2,e3e_1,e_2,e_3 the standard basis, the dual basis ψ1,ψ2,ψ3\psi_1,\psi_2,\psi_3 is given by ψ1(x,y,z)=x,ψ2(x,y,z)=y,ψ3(x,y,z)=z\psi_1 (x,y,z)=x,\psi_2 (x,y,z)=y,\psi_3 (x,y,z)=z

Theorem 3.116

When v1,...,vnv_1,...,v_n a basis of VV the dual basis ψ1,...,ψnV\psi_1,...,\psi_n\in V' is a basis

Sketch of Proof:

dim V=dim V=ndim\ V'=dim\ V=n, ψ1,...,ψnV\psi_1,...,\psi_n\in V' are linearly independent.

Theorem 3.114

Given v1,...,vnv_1,...,v_n a basis of VV, and ψ1,...,ψnV\psi_1,...,\psi_n\in V' be dual basis of VV'. then for vVv\in V,

v=ψ1(v)v1+...+ψn(v)vnv=\psi_1(v)v_1+...+\psi_n(v)v_n

Proof:

Let V=a1v1+...+anvnV=a_1 v_1+...+a_n v_n, consider ψk(v)\psi_k(v), by definition ψk(v)=ψk(a1v1+...+anvn)=a1ψk(v1)+...+anψk(vn)=ak\psi_k(v)=\psi_k(a_1 v_1+...+a_n v_n)=a_1\psi_k( v_1)+...+a_n\psi_k( v_n)=a_k

Definition 3.118

Suppose TL(V,W)T\in \mathscr{L}(V,W). The dual map TR(W,V)T'\in \mathcal{R}( W', V') defined by T(ψ)=ψTT'(\psi)=\psi\circ T. (ψW=R(W,F),T(ψ)V=L(V,F)\psi\in W'=\mathcal{R}(W,\mathbb{F}), T'(\psi) \in V'=\mathscr{L}(V,\mathbb{F}))

Example:

T:P2(F)P3(F),T(f)=xfT:\mathscr{P}_2(\mathbb{F})\to \mathscr{P}_3(\mathbb{F}),T(f)=xf

T(P3(F))(P2(F)),T(ψ)(f)=ψ(T(f))=ψ(xf)T'(\mathscr{P}_3(\mathbb{F}))'\to (\mathscr{P}_2(\mathbb{F}))',T'(\psi)(f)=\psi(T(f))=\psi(xf)

Suppose ψ(f)=f(1)T(ψ)(f)=(xf)(1)=f(1)+(xf)(1)=f(1)+f(1)\psi(f)=f'(1)\to T(\psi)(f)=(xf)'(1)=f(1)+(xf')(1)=f(1)+f'(1)

Theorem 3.120

Suppose TL(V,W)T\in \mathscr{L}(V,W)

a) (S+T)=S+T,SL(V,W)(S+T)'=S'+T', \forall S\in \mathscr{L}(V,W)
b) (λT)=λT,λF(\lambda T)'=\lambda T', \forall \lambda\in \mathbb{F}
c) (ST)=TS,SL(V,W)(ST)'=T'S', \forall S\in \mathscr{L}(V,W)

Goal: find range Trange\ T' and null Tnull\ T'

Definition 3.121

Let UVU\subseteq V be a subspace. The annihilator of UU, denoted by U0U^0 is given by U0={ψVψ(u)=0uU}U^0=\{ \psi\in V'\vert \psi(u)=0\forall u\in U\}

Proposition 3.124

Given UVU\subseteq V be a subspace. The annihilator of UU, U0VU^0\subseteq V' is a subspace.

dim U0=dim Vdim U=(dim V)dim Udim\ U^0=dim\ V-dim\ U=(dim\ V')-dim\ U

Sketch of proof:

look at i:UV,i(u)=ui:U\to V,i(u)=u, compute i:VUi':V'\to U' look at null i=U0null\ i'=U^0

Theorem 3.128, 3.130

a) null T=(range T)0null\ T'=(range\ T)^0, dim(null T)=dim null T+dim Wdim Vdim (null\ T')=dim\ null\ T+dim\ W-dim\ V
b) range T=(null T)0range\ T'=(null\ T)^0, dim(range T)=dim(range T)dim (range\ T')=dim (range\ T)