🎉 从330转为WashU帮助手册啦!

Math429
模块
Math429 L35

Lecture 35

Chapter VIII Operators on complex vector spaces

Generalized Eigenvectors and Nilpotent Operators 8A

Recall: Definition 8.8

Suppose TL(V)T\in \mathscr{L}(V) and λ\lambda is an eigenvalue of TT. A vector vVv\in V is called a generalized eigenvector of TT corresponding to λ\lambda if v0v\neq 0 and

(TλI)kv=0(T-\lambda I)^k v=0

for some positive integer kk.

Example:

For TL(F)T\in\mathscr{L}(\mathbb{F})

The matrix for TT is (0100)\begin{pmatrix} 0&1\\0&0 \end{pmatrix}

When λ=0\lambda=0, (10)\begin{pmatrix} 1 & 0 \end{pmatrix} is an eigenvector (01)\begin{pmatrix} 0&1 \end{pmatrix} is not and eigenvector but it is a generalized eigenvector.

In fact (0100)2=(0000)\begin{pmatrix} 0&1\\0&0 \end{pmatrix}^2=\begin{pmatrix} 0&0\\0&0 \end{pmatrix}, so any nonzero vector is a generalized eigenvector. is a generalized eigenvector of TT corresponding to eigenvalue 00.

Fact: vVv\in V is a generalized eigenvector of TT corresponding to λ    (TλI)dim Vv=0\lambda\iff (T-\lambda I)^{dim\ V}v=0

Theorem 8.9

Suppose F=C\mathbb{F}=\mathbb{C} and TL(V)T\in \mathscr{L}(V) Then \exists basis of VV consisting of generalized eigenvector of TT.

Proof: Let n=dim Vn=dim\ V we will induct on nn.

Base case n=1n=1, Every nonzero vector in VV is an eigenvector of TT.

Inductive step: Let n=dim Vn=dim\ V, assume the theorem is tru for all vector spaces with dim<ndim<n.

Using Theorem 8.4 V=null(TλI)nrange(TλI)nV=null(T-\lambda I)^n\oplus range(T-\lambda I)^n. If null(TλI)n=Vnull(T-\lambda I)^n=V, then every nonzero vector is a generalized eigenvector of TT

So we may assume null(TλI)nVnull(T-\lambda I)^n\neq V, so range(TλI)n{0}range(T-\lambda I)^n\neq \{0\}.

Since λ\lambda is an eigenvalue of TT, null(TλI)n{0}null(T-\lambda I)^n\neq \{0\}, range(TλI)nVrange(T-\lambda I)^n\neq V.

Furthermore, range(TλI)range(T-\lambda I)nisinvariantunderis invariant underTbyTheorem5.18.(i.eby **Theorem 5.18**. (i.ev\in range\ (T-\lambda I)^n\implies Tv\in range\ (T-\lambda I)^n$.)

Let SL(range (TλI)n)S\in \mathscr{L}(range\ (T-\lambda I)^n), be the restriction of TT to range (TλI)nrange\ (T-\lambda I)^n. By induction, \exists basis of range (TλI)nrange\ (T-\lambda I)^n consisting of generalized eigenvectors of SS. These are also generalized eigenvectors of TT. So we have

V=null (TλI)nrange (TλI)nV=null\ (T-\lambda I)^n\oplus range\ (T-\lambda I)^n

which gives our desired basis for VV.

Example:

TL(C3)T\in \mathscr{L}(\mathbb{C}^3) matrix is (000400005)\begin{pmatrix}0&0&0\\4&0&0\\0&0&5\end{pmatrix} by lower triangular matrix, eigenvalues are 0,50,5.

The generalized eigenvector can be obtained (000400005)3=(00000000125)\begin{pmatrix}0&0&0\\4&0&0\\0&0&5\end{pmatrix}^3=\begin{pmatrix}0&0&0\\0&0&0\\0&0&125\end{pmatrix}

So the generalized eigenvectors for eigenvalue 00 are (z1,z2,0)(z_1,z_2,0),

So the standard basis for C3\mathbb{C}^3 consists of generalized eigenvectors of TT.

Recall: If vv is an eigenvector of TT of eigenvalue λ\lambda and vv is an eigenvector of TT of eigenvalue α\alpha, then λ=α\lambda=\alpha.

Proof:

Tv=λv,Tv=αvTv=\lambda v,Tv=\alpha v, then λv=αv,λα=0\lambda v=\alpha v,\lambda-\alpha=0

More generalized we have

Theorem 8.11

Each generalized eigenvectors of TT corresponds to only one eigenvalue of TT.

Proof:

Suppose vVv\in V is a generalized eigenvector of TT corresponds to eigenvalues λ\lambda and α\alpha.

Let n=dim Vn=dim\ V, we know (TλI)nv=0,(TαI)nv=0(T-\lambda I)^n v=0,(T-\alpha I)^n v=0. Let mm be the smallest positive integer such that (TαI)mv=0(T-\alpha I)^m v=0 (so (TαI)m1v0(T-\alpha I)^{m-1}v\neq 0).

Then, let A=αIλIA=\alpha I-\lambda I, B=TαIB=T-\alpha I, and AB=BAAB=BA

0=(TλI)nv=(B+A)nv=k=0n(nk)AnkBkv\begin{aligned} 0&=(T-\lambda I)^n v\\ &=(B+A)^n v\\ &=\sum^n_{k=0} \begin{pmatrix} n\\k \end{pmatrix} A^{n-k}B^kv \end{aligned}

Then we apply (TαI)m1(T-\alpha I)^{m-1}, which is Bm1B^{m-1} to both sides

0=AnBm1v\begin{aligned} 0&=A^nB^{m-1}v \end{aligned}

Since (TαI)m10(T-\alpha I)^{m-1}\neq 0, A=0A=0, then αIλI=0\alpha I-\lambda I=0, α=λ\alpha=\lambda